Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (68) GO Terms (3) Nucleotides (44) Proteins (32) Interactants (163) Wiki
XB-GENEPAGE-994674

Papers associated with crh



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


cyp21a2 Knockout Tadpoles Survive Metamorphosis Despite Low Corticosterone., Paul B, Shewade LH, Buchholz DR., Endocrinology. November 14, 2022; 164 (1):               


Thyroid Disrupting Chemicals in Mixture Perturb Thymocyte Differentiation in Xenopus laevis Tadpoles., McGuire CC, Lawrence BP, Robert J., Toxicol Sci. May 27, 2021; 181 (2): 262-272.


Tectal CRFR1 receptor involvement in avoidance and approach behaviors in the South African clawed frog, Xenopus laevis., Prater CM, Harris BN, Carr JA., Horm Behav. April 1, 2020; 120 104707.


Pituitary cell translation and secretory capacities are enhanced cell autonomously by the transcription factor Creb3l2., Khetchoumian K, Balsalobre A, Mayran A, Christian H, Chénard V, St-Pierre J, Drouin J., Nat Commun. September 3, 2019; 10 (1): 3960.                                  


Tectal CRFR1 receptors modulate food intake and feeding behavior in the South African clawed frog Xenopus laevis., Prater CM, Harris BN, Carr JA., Horm Behav. September 1, 2018; 105 86-94.


Mapping the binding site of the P2X receptor antagonist PPADS reveals the importance of orthosteric site charge and the cysteine-rich head region., Huo H, Fryatt AG, Farmer LK, Schmid R, Evans RJ., J Biol Chem. August 17, 2018; 293 (33): 12820-12831.                


Tectal corticotropin-releasing factor (CRF) neurons respond to fasting and a reactive stressor in the African Clawed Frog, Xenopus laevis., Prater CM, Garcia C, McGuire LP, Carr JA., Gen Comp Endocrinol. March 1, 2018; 258 91-98.


Digital dissection of the model organism Xenopus laevis using contrast-enhanced computed tomography., Porro LB, Richards CT., J Anat. August 1, 2017; 231 (2): 169-191.                        


Alterations in gene expression levels provide early indicators of chemical stress during Xenopus laevis embryo development: A case study with perfluorooctane sulfonate (PFOS)., San-Segundo L, Guimarães L, Fernández Torija C, Beltrán EM, Guilhermino L, Pablos MV., Ecotoxicol Environ Saf. May 1, 2016; 127 51-60.


In silico analysis of the conservation of human toxicity and endocrine disruption targets in aquatic species., McRobb FM, Sahagún V, Kufareva I, Abagyan R., Environ Sci Technol. January 1, 2014; 48 (3): 1964-72.      


An intrinsic CRF signaling system within the optic tectum., Carr JA, Zhang B, Li W, Gao M, Garcia C, Lustgarten J, Wages M, Smith EE., Gen Comp Endocrinol. July 1, 2013; 188 204-11.  


Metamorphosis in a frog that does not have a tadpole., Elinson RP., Curr Top Dev Biol. January 1, 2013; 103 259-76.


The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis., Jenks BG, Kuribara M, Kidane AH, Kramer BM, Roubos EW, Scheenen WJ., Gen Comp Endocrinol. July 1, 2012; 177 (3): 315-21.      


The origins and evolution of vertebrate metamorphosis., Laudet V., Curr Biol. September 27, 2011; 21 (18): R726-37.            


Plasticity of melanotrope cell regulations in Xenopus laevis., Roubos EW, Van Wijk DC, Kozicz T, Scheenen WJ, Jenks BG., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.    


Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis., van Wijk DC, Meijer KH, Roubos EW., Gen Comp Endocrinol. September 1, 2010; 168 (2): 293-301.        


The organization of CRF neuronal pathways in toads: Evidence that retinal afferents do not contribute significantly to tectal CRF content., Carr JA, Lustgarten J, Ahmed N, Bergfeld N, Bulin SE, Shoukfeh O, Tripathy S., Brain Behav Evol. January 1, 2010; 76 (1): 71-86.


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJ, Kozicz T., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


Teratogenic effects of chronic treatment with corticosterone on tadpoles of Xenopus laevis., Lorenz C, Opitz R, Lutz I, Kloas W., Ann N Y Acad Sci. April 1, 2009; 1163 454-6.


Evolutionarily conserved glucocorticoid regulation of corticotropin-releasing factor expression., Yao M, Schulkin J, Denver RJ., Endocrinology. May 1, 2008; 149 (5): 2352-60.


Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis., Roubos EW, Lázár G, Calle M, Barendregt HP, Gaszner B, Kozicz T., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.                  


A combined patch-clamp and electrorotation study of the voltage- and frequency-dependent membrane capacitance caused by structurally dissimilar lipophilic anions., Zimmermann D, Kiesel M, Terpitz U, Zhou A, Reuss R, Kraus J, Schenk WA, Bamberg E, Sukhorukov VL., J Membr Biol. January 1, 2008; 221 (2): 107-21.            


Structural and functional conservation of vertebrate corticotropin-releasing factor genes: evidence for a critical role for a conserved cyclic AMP response element., Yao M, Stenzel-Poore M, Denver RJ., Endocrinology. May 1, 2007; 148 (5): 2518-31.


Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland., Calle M, Jenks BG, Corstens GJ, Veening JG, Barendregt HP, Roubos EW., J Neuroendocrinol. October 1, 2006; 18 (10): 797-805.


Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis., Calle M, Kozicz T, van der Linden E, Desfeux A, Veening JG, Barendregt HP, Roubos EW., Gen Comp Endocrinol. July 1, 2006; 147 (3): 237-46.        


Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides., Boorse GC, Denver RJ., Gen Comp Endocrinol. March 1, 2006; 146 (1): 9-18.      


Corticotropin-releasing factor is cytoprotective in Xenopus tadpole tail: coordination of ligand, receptor, and binding protein in tail muscle cell survival., Boorse GC, Kholdani CA, Seasholtz AF, Denver RJ., Endocrinology. March 1, 2006; 147 (3): 1498-507.


Urocortins of the South African clawed frog, Xenopus laevis: conservation of structure and function in tetrapod evolution., Boorse GC, Crespi EJ, Dautzenberg FM, Denver RJ., Endocrinology. November 1, 2005; 146 (11): 4851-60.


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M, Corstens GJ, Wang L, Kozicz T, Denver RJ, Barendregt HP, Roubos EW., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Opioid peptides, CRF, and urocortin in cerebrospinal fluid-contacting neurons in Xenopus laevis., Calle M, Claassen IE, Veening JG, Kozicz T, Roubos EW, Barendregt HP., Ann N Y Acad Sci. April 1, 2005; 1040 249-52.


Distribution and acute stressor-induced activation of corticotrophin-releasing hormone neurones in the central nervous system of Xenopus laevis., Yao M, Westphal NJ, Denver RJ., J Neuroendocrinol. November 1, 2004; 16 (11): 880-93.


Ontogeny of corticotropin-releasing factor effects on locomotion and foraging in the Western spadefoot toad (Spea hammondii)., Crespi EJ, Denver RJ., Horm Behav. November 1, 2004; 46 (4): 399-410.


Regulation of pituitary thyrotropin gene expression during Xenopus metamorphosis: negative feedback is functional throughout metamorphosis., Manzon RG, Denver RJ., J Endocrinol. August 1, 2004; 182 (2): 273-85.


Cloning and tissue distribution of the chicken type 2 corticotropin-releasing hormone receptor., de Groef B, Grommen SV, Mertens I, Schoofs L, Kühn ER, Darras VM., Gen Comp Endocrinol. August 1, 2004; 138 (1): 89-95.


Expression and hypophysiotropic actions of corticotropin-releasing factor in Xenopus laevis., Boorse GC, Denver RJ., Gen Comp Endocrinol. July 1, 2004; 137 (3): 272-82.


Binding differences of human and amphibian corticotropin-releasing factor type 1 (CRF(1)) receptors: identification of amino acids mediating high-affinity astressin binding and functional antagonism., Dautzenberg FM, Wille S., Regul Pept. May 15, 2004; 118 (3): 165-73.


Roles of corticotropin-releasing factor, neuropeptide Y and corticosterone in the regulation of food intake in Xenopus laevis., Crespi EJ, Vaudry H, Denver RJ., J Neuroendocrinol. March 1, 2004; 16 (3): 279-88.


Corticotropin-releasing hormone-binding protein: biochemistry and function from fishes to mammals., Seasholtz AF, Valverde RA, Denver RJ., J Endocrinol. October 1, 2002; 175 (1): 89-97.


Five amino acids of the Xenopus laevis CRF (corticotropin-releasing factor) type 2 receptor mediate differential binding of CRF ligands in comparison with its human counterpart., Dautzenberg FM, Higelin J, Brauns O, Butscha B, Hauger RL., Mol Pharmacol. May 1, 2002; 61 (5): 1132-9.


Cloning and functional pharmacology of two corticotropin-releasing factor receptors from a teleost fish., Pohl S, Darlison MG, Clarke WC, Lederis K, Richter D., Eur J Pharmacol. November 2, 2001; 430 (2-3): 193-202.


Biochemical characterization and expression analysis of the Xenopus laevis corticotropin-releasing hormone binding protein., Valverde RA, Seasholtz AF, Cortright DN, Denver RJ., Mol Cell Endocrinol. February 28, 2001; 173 (1-2): 29-40.


Characterization of three corticotropin-releasing factor receptors in catfish: a novel third receptor is predominantly expressed in pituitary and urophysis., Arai M, Assil IQ, Abou-Samra AB., Endocrinology. January 1, 2001; 142 (1): 446-54.


Different binding modes of amphibian and human corticotropin-releasing factor type 1 and type 2 receptors: evidence for evolutionary differences., Dautzenberg FM, Py-Lang G, Higelin J, Fischer C, Wright MB, Huber G., J Pharmacol Exp Ther. January 1, 2001; 296 (1): 113-20.


125I-Antisauvagine-30: a novel and specific high-affinity radioligand for the characterization of corticotropin-releasing factor type 2 receptors., Higelin J, Py-Lang G, Paternoster C, Ellis GJ, Patel A, Dautzenberg FM., Neuropharmacology. January 1, 2001; 40 (1): 114-22.


The ligand-selective domains of corticotropin-releasing factor type 1 and type 2 receptor reside in different extracellular domains: generation of chimeric receptors with a novel ligand-selective profile., Dautzenberg FM, Kilpatrick GJ, Wille S, Hauger RL., J Neurochem. August 1, 1999; 73 (2): 821-9.


Identification of amino acids in the N-terminal domain of corticotropin-releasing factor receptor 1 that are important determinants of high-affinity ligand binding., Wille S, Sydow S, Palchaudhuri MR, Spiess J, Dautzenberg FM., J Neurochem. January 1, 1999; 72 (1): 388-95.


Expression of salmon corticotropin-releasing hormone precursor gene in the preoptic nucleus in stressed rainbow trout., Ando H, Hasegawa M, Ando J, Urano A., Gen Comp Endocrinol. January 1, 1999; 113 (1): 87-95.


Structure and function of the ovine type 1 corticotropin releasing factor receptor (CRF1) and a carboxyl-terminal variant., Myers DA, Trinh JV, Myers TR., Mol Cell Endocrinol. September 25, 1998; 144 (1-2): 21-35.


Mapping of the ligand-selective domain of the Xenopus laevis corticotropin-releasing factor receptor 1: implications for the ligand-binding site., Dautzenberg FM, Wille S, Lohmann R, Spiess J., Proc Natl Acad Sci U S A. April 28, 1998; 95 (9): 4941-6.


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.

???pagination.result.page??? 1 2 ???pagination.result.next???