Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (23) GO Terms (5) Nucleotides (462) Proteins (49) Interactants (380) Wiki
XB-GENEPAGE-995847

Papers associated with chd4



Limit to papers also referencing gene:

Results 1 - 23 of 23 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

A convergent molecular network underlying autism and congenital heart disease., Rosenthal SB, Willsey HR, Xu Y, Xu Y, Mei Y, Dea J, Wang S, Curtis C, Sempou E, Khokha MK, Chi NC, Willsey AJ, Fisch KM, Ideker T., Cell Syst. November 17, 2021; 12 (11): 1094-1107.e6.            


Characterization of axolotl lampbrush chromosomes by fluorescence in situ hybridization and immunostaining., Keinath MC, Davidian A, Timoshevskiy V, Timoshevskaya N, Gall JG., Exp Cell Res. March 3, 2021; 401 (2): 112523.            


Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations., Farnung L, Ochmann M, Cramer P., Elife. June 16, 2020; 9


A NuRD Complex from Xenopus laevis Eggs Is Essential for DNA Replication during Early Embryogenesis., Christov CP, Dingwell KS, Skehel M, Wilkes HS, Sale JE, Smith JC, Krude T., Cell Rep. February 27, 2018; 22 (9): 2265-2278.                        


HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome., Jenness C, Giunta S, Müller MM, Kimura H, Muir TW, Funabiki H., Proc Natl Acad Sci U S A. January 30, 2018; 115 (5): E876-E885.                                


Id genes are essential for early heart formation., Cunningham TJ, Yu MS, McKeithan WL, Spiering S, Carrette F, Huang CT, Bushway PJ, Tierney M, Albini S, Giacca M, Mano M, Puri PL, Sacco A, Ruiz-Lozano P, Riou JF, Umbhauer M, Duester G, Mercola M, Colas AR., Genes Dev. July 1, 2017; 31 (13): 1325-1338.                


A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes., Oswald F, Rodriguez P, Giaimo BD, Antonello ZA, Mira L, Mittler G, Thiel VN, Collins KJ, Tabaja N, Cizelsky W, Rothe M, Kühl SJ, Kühl SJ, Kühl M, Ferrante F, Hein K, Kovall RA, Dominguez M, Borggrefe T., Nucleic Acids Res. June 2, 2016; 44 (10): 4703-20.                              


Purification of nuclear localization signal-containing proteins and its application to investigation of the mechanisms of the cell division cycle., Christodoulou A, Yokoyama H., Small GTPases. January 1, 2015; 6 (1): 20-7.      


CHD4 is a RanGTP-dependent MAP that stabilizes microtubules and regulates bipolar spindle formation., Yokoyama H, Nakos K, Santarella-Mellwig R, Rybina S, Krijgsveld J, Koffa MD, Mattaj IW., Curr Biol. December 16, 2013; 23 (24): 2443-51.                      


Affinity-based enrichment strategies to assay methyl-CpG binding activity and DNA methylation in early Xenopus embryos., Bogdanović O, Veenstra GJ., BMC Res Notes. May 6, 2011; 4 300.      


Localization of receptor site on insect sodium channel for depressant β-toxin BmK IT2., He H, Liu Z, Dong B, Zhang J, Shu X, Zhou J, Ji Y., PLoS One. January 7, 2011; 6 (1): e14510.            


Different Mi-2 complexes for various developmental functions in Caenorhabditis elegans., Passannante M, Marti CO, Pfefferli C, Moroni PS, Kaeser-Pebernard S, Puoti A, Hunziker P, Wicky C, Müller F., PLoS One. October 22, 2010; 5 (10): e13681.                


CHD4/Mi-2beta activity is required for the positioning of the mesoderm/neuroectoderm boundary in Xenopus., Linder B, Mentele E, Mansperger K, Straub T, Kremmer E, Rupp RA., Genes Dev. April 15, 2007; 21 (8): 973-83.            


Developmental roles of the Mi-2/NURD-associated protein p66 in Drosophila., Kon C, Cadigan KM, da Silva SL, Nusse R., Genetics. April 1, 2005; 169 (4): 2087-100.


The SNF2 domain protein family in higher vertebrates displays dynamic expression patterns in Xenopus laevis embryos., Linder B, Cabot RA, Schwickert T, Rupp RA., Gene. February 4, 2004; 326 59-66.                                              


Nucleosome sliding induced by the xMi-2 complex does not occur exclusively via a simple twist-diffusion mechanism., Aoyagi S, Wade PA, Hayes JJ., J Biol Chem. August 15, 2003; 278 (33): 30562-8.


Two highly related p66 proteins comprise a new family of potent transcriptional repressors interacting with MBD2 and MBD3., Brackertz M, Boeke J, Zhang R, Renkawitz R., J Biol Chem. October 25, 2002; 277 (43): 40958-66.


Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression., Li J, Lin Q, Wang W, Wade P, Wong J., Genes Dev. March 15, 2002; 16 (6): 687-92.


Generation of superhelical torsion by ATP-dependent chromatin remodeling activities., Havas K, Flaus A, Phelan M, Kingston R, Wade PA, Lilley DM, Owen-Hughes T., Cell. December 22, 2000; 103 (7): 1133-42.


Targeting of N-CoR and histone deacetylase 3 by the oncoprotein v-erbA yields a chromatin infrastructure-dependent transcriptional repression pathway., Urnov FD, Yee J, Sachs L, Collingwood TN, Bauer A, Beug H, Shi YB, Shi YB, Wolffe AP., EMBO J. August 1, 2000; 19 (15): 4074-90.


ATP-Dependent histone octamer mobilization and histone deacetylation mediated by the Mi-2 chromatin remodeling complex., Guschin D, Wade PA, Kikyo N, Wolffe AP., Biochemistry. May 9, 2000; 39 (18): 5238-45.


Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation., Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP., Nat Genet. September 1, 1999; 23 (1): 62-6.


A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase., Wade PA, Jones PL, Vermaak D, Wolffe AP., Curr Biol. July 2, 1998; 8 (14): 843-6.

Page(s): 1