Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (97) GO Terms (0) Nucleotides (2) Proteins (1) Interactants (135) Wiki

Papers associated with kcnj6

Limit to papers also referencing gene:

Results 1 - 50 of 97 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

WIN55,212-2, a Dual Modulator of Cannabinoid Receptors and G Protein-Coupled Inward Rectifier Potassium Channels., An D, Peigneur S, Tytgat J., Biomedicines. April 28, 2021; 9 (5):               

Identification of a unique endoplasmic retention motif in the Xenopus GIRK5 channel and its contribution to oocyte maturation., Rangel-Garcia CI, Salvador C, Chavez-Garcia K, Diaz-Bello B, Lopez-Gonzalez Z, Vazquez-Cruz L, Angel Vazquez-Martinez J, Ortiz-Navarrete V, Riveros-Rosas H, Escobar LI., FEBS Open Bio. April 1, 2021; 11 (4): 1093-1108.            

A Collision Coupling Model Governs the Activation of Neuronal GIRK1/2 Channels by Muscarinic-2 Receptors., Berlin S, Artzy E, Handklo-Jamal R, Kahanovitch U, Parnas H, Dascal N, Yakubovich D., Front Pharmacol. April 7, 2020; 11 1216.                              

Mutual action by Gγ and Gβ for optimal activation of GIRK channels in a channel subunit-specific manner., Tabak G, Keren-Raifman T, Kahanovitch U, Dascal N., Sci Rep. January 24, 2019; 9 (1): 508.                    

Ivermectin activates GIRK channels in a PIP2 -dependent, Gβγ -independent manner and an amino acid residue at the slide helix governs the activation., Chen IS, Tateyama M, Fukata Y, Uesugi M, Kubo Y., J Physiol. September 1, 2017; 595 (17): 5895-5912.

Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus., Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A., J Biol Chem. April 14, 2017; 292 (15): 6135-6147.

GIRK Channels Mediate the Nonphotic Effects of Exogenous Melatonin., Hablitz LM, Molzof HE, Abrahamsson KE, Cooper JM, Prosser RA, Gamble KL., J Neurosci. November 11, 2015; 35 (45): 14957-65.

A Quantitative Model of the GIRK1/2 Channel Reveals That Its Basal and Evoked Activities Are Controlled by Unequal Stoichiometry of Gα and Gβγ., Yakubovich D, Berlin S, Kahanovitch U, Rubinstein M, Farhy-Tselnicker I, Styr B, Keren-Raifman T, Dessauer CW, Dascal N., PLoS Comput Biol. November 6, 2015; 11 (11): e1004598.                  

Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium Channels., Thomson SJ, Hansen A, Sanguinetti MC., J Biol Chem. June 5, 2015; 290 (23): 14528-35.

Recruitment of Gβγ controls the basal activity of G-protein coupled inwardly rectifying potassium (GIRK) channels: crucial role of distal C terminus of GIRK1., Kahanovitch U, Tsemakhovich V, Berlin S, Rubinstein M, Styr B, Castel R, Peleg S, Tabak G, Dessauer CW, Ivanina T, Dascal N., J Physiol. December 15, 2014; 592 (24): 5373-90.

Tethered protein display identifies a novel Kir3.2 (GIRK2) regulator from protein scaffold libraries., Bagriantsev SN, Chatelain FC, Clark KA, Alagem N, Reuveny E, Minor DL., ACS Chem Neurosci. September 17, 2014; 5 (9): 812-22.              

Functional diversity of voltage-sensing phosphatases in two urodele amphibians., Mutua J, Jinno Y, Sakata S, Okochi Y, Ueno S, Tsutsui H, Kawai T, Iwao Y, Okamura Y., Physiol Rep. July 16, 2014; 2 (7):                 

State-dependent network connectivity determines gating in a K+ channel., Bollepalli MK, Fowler PW, Rapedius M, Shang L, Sansom MS, Tucker SJ, Baukrowitz T., Structure. July 8, 2014; 22 (7): 1037-46.              

Insights into the structural nature of the transition state in the Kir channel gating pathway., Fowler PW, Bollepalli MK, Rapedius M, Nematian-Ardestani E, Shang L, Sansom MS, Tucker SJ, Baukrowitz T., Channels (Austin). January 1, 2014; 8 (6): 551-5.    

Conformational changes underlying pore dilation in the cytoplasmic domain of mammalian inward rectifier K+ channels., Inanobe A, Nakagawa A, Kurachi Y., PLoS One. November 13, 2013; 8 (11): e79844.              

Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium., Whorton MR, MacKinnon R., Cell. September 30, 2011; 147 (1): 199-208.

Hesperidin induces antinociceptive effect in mice and its aglycone, hesperetin, binds to μ-opioid receptor and inhibits GIRK1/2 currents., Loscalzo LM, Yow TT, Wasowski C, Chebib M, Marder M., Pharmacol Biochem Behav. September 1, 2011; 99 (3): 333-41.

Inhibition of g protein-activated inwardly rectifying k channels by phencyclidine., Kobayashi T, Nishizawa D, Ikeda K., Curr Neuropharmacol. March 1, 2011; 9 (1): 244-6.    

Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants., Kobayashi T, Washiyama K, Ikeda K., PLoS One. January 1, 2011; 6 (12): e28208.            

G protein {beta}{gamma} gating confers volatile anesthetic inhibition to Kir3 channels., Styer AM, Mirshahi UL, Wang C, Girard L, Jin T, Logothetis DE, Mirshahi T., J Biol Chem. December 31, 2010; 285 (53): 41290-9.

Intron 4 containing novel GABAB1 isoforms impair GABAB receptor function., Lee C, Lee C, Mayfield RD, Harris RA., PLoS One. November 16, 2010; 5 (11): e14044.            

Inhibition of G-protein-activated inwardly rectifying K+ channels by the selective norepinephrine reuptake inhibitors atomoxetine and reboxetine., Kobayashi T, Washiyama K, Ikeda K., Neuropsychopharmacology. June 1, 2010; 35 (7): 1560-9.

G alpha(i) and G betagamma jointly regulate the conformations of a G betagamma effector, the neuronal G protein-activated K+ channel (GIRK)., Berlin S, Keren-Raifman T, Castel R, Rubinstein M, Dessauer CW, Ivanina T, Dascal N., J Biol Chem. February 26, 2010; 285 (9): 6179-85.

Pregnenolone sulfate potentiates the inwardly rectifying K channel Kir2.3., Kobayashi T, Washiyama K, Ikeda K., PLoS One. July 21, 2009; 4 (7): e6311.              

Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K+ channel by GalphaiGDP and Gbetagamma., Rubinstein M, Peleg S, Berlin S, Brass D, Keren-Raifman T, Dessauer CW, Ivanina T, Dascal N., J Physiol. July 15, 2009; 587 (Pt 14): 3473-91.

The cannabinoid receptor agonists, anandamide and WIN 55,212-2, do not directly affect mu opioid receptors expressed in Xenopus oocytes., Kracke GR, Stoneking SP, Ball JM, Tilghman BM, Washington CC, Hotaling KA, Johnson JO, Tobias JD., Naunyn Schmiedebergs Arch Pharmacol. December 1, 2007; 376 (4): 285-93.

Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2., Murata Y, Okamura Y., J Physiol. September 15, 2007; 583 (Pt 3): 875-89.

Lobeline, a potential pharmacotherapy for drug addiction, binds to mu opioid receptors and diminishes the effects of opioid receptor agonists., Miller DK, Lever JR, Rodvelt KR, Baskett JA, Will MJ, Kracke GR., Drug Alcohol Depend. July 10, 2007; 89 (2-3): 282-91.

Inhibition by cocaine of G protein-activated inwardly rectifying K+ channels expressed in Xenopus oocytes., Kobayashi T, Nishizawa D, Iwamura T, Ikeda K., Toxicol In Vitro. June 1, 2007; 21 (4): 656-64.

The GIRK1 brain variant GIRK1d and its functional impact on heteromultimeric GIRK channels., Steinecker B, Rosker C, Schreibmayer W., J Recept Signal Transduct Res. January 1, 2007; 27 (5-6): 369-82.

Inhibition of G protein-activated inwardly rectifying K+ channels by the antidepressant paroxetine., Kobayashi T, Washiyama K, Ikeda K., J Pharmacol Sci. November 1, 2006; 102 (3): 278-87.

Electrostatic interactions in the channel cavity as an important determinant of potassium channel selectivity., Bichet D, Grabe M, Jan YN, Jan LY., Proc Natl Acad Sci U S A. September 26, 2006; 103 (39): 14355-60.

K+ channel selectivity depends on kinetic as well as thermodynamic factors., Grabe M, Bichet D, Qian X, Jan YN, Jan LY., Proc Natl Acad Sci U S A. September 26, 2006; 103 (39): 14361-6.

Effects of the abused inhalant toluene on ethanol-sensitive potassium channels expressed in oocytes., Del Re AM, Dopico AM, Woodward JJ., Dev Biol. May 4, 2006; 1087 (1): 75-82.

Inhibition of G protein-activated inwardly rectifying K+ channels by ifenprodil., Kobayashi T, Washiyama K, Ikeda K., Neuropsychopharmacology. March 1, 2006; 31 (3): 516-24.

G protein-activated inwardly rectifying K+ channel inhibition and rescue of weaver mouse motor functions by antidepressants., Takahashi T, Kobayashi T, Ozaki M, Takamatsu Y, Ogai Y, Ohta M, Yamamoto H, Ikeda K., Neurosci Res. February 1, 2006; 54 (2): 104-11.

Pertussis-toxin-sensitive Galpha subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex., Clancy SM, Fowler CE, Finley M, Suen KF, Arrabit C, Berton F, Kosaza T, Casey PJ, Slesinger PA., Mol Cell Neurosci. February 1, 2005; 28 (2): 375-89.

Modulators of G protein-activated inwardly rectifying K+ channels: potentially therapeutic agents for addictive drug users., Kobayashi T, Washiyama K, Ikeda K., Ann N Y Acad Sci. October 1, 2004; 1025 590-4.

Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugs., Kobayashi T, Washiyama K, Ikeda K., Neuropsychopharmacology. October 1, 2004; 29 (10): 1841-51.

The sensitivity of G protein-activated K+ channels toward halothane is essentially determined by the C terminus., Milovic S, Steinecker-Frohnwieser B, Schreibmayer W, Weigl LG., J Biol Chem. August 13, 2004; 279 (33): 34240-9.

Galphai1 and Galphai3 differentially interact with, and regulate, the G protein-activated K+ channel., Ivanina T, Varon D, Peleg S, Rishal I, Porozov Y, Dessauer CW, Keren-Raifman T, Dascal N., J Biol Chem. April 23, 2004; 279 (17): 17260-8.

Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity., Bichet D, Lin YF, Ibarra CA, Huang CS, Yi BA, Jan YN, Jan LY., Proc Natl Acad Sci U S A. March 30, 2004; 101 (13): 4441-6.

betaL-betaM loop in the C-terminal domain of G protein-activated inwardly rectifying K(+) channels is important for G(betagamma) subunit activation., Finley M, Arrabit C, Fowler C, Suen KF, Slesinger PA., J Physiol. March 16, 2004; 555 (Pt 3): 643-57.

Mapping the Gbetagamma-binding sites in GIRK1 and GIRK2 subunits of the G protein-activated K+ channel., Ivanina T, Rishal I, Varon D, Mullner C, Frohnwieser-Steinecke B, Schreibmayer W, Dessauer CW, Dascal N., J Biol Chem. August 1, 2003; 278 (31): 29174-83.

Inhibition of G protein-activated inwardly rectifying K+ channels by fluoxetine (Prozac)., Kobayashi T, Washiyama K, Ikeda K., Br J Pharmacol. March 1, 2003; 138 (6): 1119-28.

Serine 329 of the mu-opioid receptor interacts differently with agonists., Pil J, Tytgat J., J Pharmacol Exp Ther. March 1, 2003; 304 (3): 924-30.

A role for the middle C terminus of G-protein-activated inward rectifier potassium channels in regulating gating., Guo Y, Waldron GJ, Murrell-Lagnado R., J Biol Chem. December 13, 2002; 277 (50): 48289-94.

Functional characterization of an endogenous Xenopus oocyte adenosine receptor., Kobayashi T, Ikeda K, Kumanishi T., Br J Pharmacol. January 1, 2002; 135 (2): 313-22.

Does acetaldehyde mediate ethanol action in the central nervous system?, Mascia MP, Maiya R, Borghese CM, Lobo IA, Hara K, Yamakura T, Gong DH, Beckstead MJ., Alcohol Clin Exp Res. November 1, 2001; 25 (11): 1570-5.

Morphine-6beta-glucuronide and morphine-3-glucuronide, opioid receptor agonists with different potencies., Ulens C, Baker L, Ratka A, Waumans D, Tytgat J., Biochem Pharmacol. November 1, 2001; 62 (9): 1273-82.

Page(s): 1 2 Next