Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Search Criteria
Gene/CloneSpeciesStageAnatomy ItemExperimenter
isl1xenopus stomach [+] 

Too many results?Too few results?

Experiment details for isl1

Mukherjee S et al. (2020) Assay

Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network.

Gene Clone Species Stages Anatomy
isl1 tropicalis NF stage 35 and 36 stomach

Display additional annotations [+]
  Figure 1—figure supplement 1. Characterization of Sox17-MO embryos and Sox17-regulated transcriptome. (A) Temporal expression of key endoderm GRN transcripts (GSE65785; Owens et al., 2016). (B) Sequence alignment of antisense sox17a-MO and sox17b-MO (red) with 5’ end of Xenopus tropicalis sox17a, sox17b.1 and sox17b.2 mRNAs (black) spanning the ATG translation start (green). (C) In situ hybridization of markers for the liver (nr1h5), stomach, lung, intestine and pharynx (osr1 and islet1) snowing that co-injection of mouse Sox17 RNA rescues gut development in sox17-MO embryos at the tailbud stage. (D) Additional validation of gastrula stage transcripts downregulated (otx2, admp, dhh and gata4) or upregulated (wnt8 and nodal1) in sox17-MO embryos and rescue by co-injection of mSox17. (E) GO term enrichment analysis of Sox17-regulated genes showing fold enrichment by Fisher’s exact test with p-values adjusted to 5% FDR for multiple testing correction.

Gene Clone Species Stages Anatomy
isl1 tropicalis NF stage 35 and 36 stomach

Display additional annotations [+]
  Figure 3—figure supplement 1. Validation of Bcat-MO embryos. (A) Immunostaining of Tg(WntREs:dEGFP)Vlem Xenopus tropicalis gastrula embryos show the loss of nuclear Bcat and GFP expression from the Wnt-reporter transgene in Bcat-MO embryos demonstrate effective knockdown. (B–C) Co-injection of RNA encoding a human S37A-stabilized Bcat recues the Bcat-MO-ventralized phenotype. In situ hybridization of gastrula (B) and tailbud embryos (C). In Bcat-MO gastrula, fst and admp are downregulated in the dorsal organizer, whereas wnt8a and ventx3.1 are upregulated consistent with a ventralized phenotype. (C) In situ hybridization of markers for the liver (nr1h5), stomach, lung, intestine and pharynx (osr1 and islet1) show that co-injection of human S37A-stabilized Bcat RNA rescues the ventralized phenotype and disrupted gut development in Bcat-MO tailbud embryos.