Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10128
Brain Res Mol Brain Res 2000 Sep 15;802:269-78. doi: 10.1016/s0169-328x(00)00146-7.
Show Gene links Show Anatomy links

Cloning and functional expression of rKCNQ2 K(+) channel from rat brain.

Jow F , Wang K .


???displayArticle.abstract???
By homologue cloning, we have isolated a cDNA encoding a voltage-gated K(+) channel, rKCNQ2, from a rat brain cDNA library using RACE. The open reading frame of the translated protein comprises 852 amino acids with 6 transmembrane segments and a pore motif between S5 and S6. rKCNQ2 shares 96% amino acid identity with human KCNQ2 in which mutations cause a form of epilepsy known as benign familial neonatal convulsions (BFNC). Northern blotting with a rKCNQ2-specific probe revealed a robust single band of 8.6-kb transcript expressed in brain not in other tissues. Functional expression of rKCNQ2 in an HEK 293 cell line by whole-cell current recording and in Xenopus oocytes by two-electrode voltage clamp showed outward K(+) selective currents that displayed delayed rectifier-type kinetics. The G-V curve, fitted with a Boltzmann function, showed voltage dependence of activation with a threshold of activation approximately -60 mV. The rKCNQ2 currents were sensitive to TEA block with a Ki of 0.1 mM. In addition, rKCNQ2 currents were down-regulated upon exposure of cells to either a broad-spectrum tyrosine kinase inhibitor genistein or a Src-like tyrosine kinase inhibitor herbimycin A. Our findings add a rodent member to the KCNQ channel subfamily, providing new information of the channel modulation, and will facilitate generation of rodent models of epilepsy.

???displayArticle.pubmedLink??? 11038262
???displayArticle.link??? Brain Res Mol Brain Res


Species referenced: Xenopus
Genes referenced: cyp26a1 kcnq2