Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Am J Physiol Cell Physiol 2006 Apr 01;2904:C1209-20. doi: 10.1152/ajpcell.00247.2005.
Show Gene links Show Anatomy links

Dominant-negative effects of human P/Q-type Ca2+ channel mutations associated with episodic ataxia type 2.

Jeng CJ , Chen YT , Chen YW , Tang CY .

Episodic ataxia type 2 (EA2) is an inherited autosomal dominant disorder related to cerebellar dysfunction and is associated with mutations in the pore-forming alpha(1A)-subunits of human P/Q-type Ca(2+) channels (Cav2.1 channels). The majority of EA2 mutations result in significant loss-of-function phenotypes. Whether EA2 mutants may display dominant-negative effects in human, however, remains controversial. To address this issue, five EA2 mutants in the long isoform of human alpha(1A)-subunits were expressed in Xenopus oocytes to explore their potential dominant-negative effects. Upon coexpressing the cRNA of alpha(1A)-WT with each alpha(1A)-mutant in molar ratios ranging from 1:1 to 1:10, the amplitude of Ba(2+) currents through wild-type (WT)-Cav2.1 channels decreased significantly as the relative molar ratio of alpha(1A)-mutants increased, suggesting the presence of an alpha(1A)-mutant-specific suppression effect. When we coexpressed alpha(1A)-WT with proteins not known to interact with Cav2.1 channels, we observed no significant suppression effects. Furthermore, increasing the amount of auxiliary subunits resulted in partial reversal of the suppression effects in nonsense but not missense EA2 mutants. On the other hand, when we repeated the same coinjection experiments of alpha(1A)-WT and mutant using a splice variant of alpha(1A)-subunit that contained a considerably shorter COOH terminus (i.e., the short isoform), no significant dominant-negative effects were noted until we enhanced the relative molar ratio to 1:10. Altogether, these results indicate that for human WT-Cav2.1 channels comprising the long-alpha(1A)-subunit isoform, both missense and nonsense EA2 mutants indeed display prominent dominant-negative effects.

PubMed ID: 16306128
Article link: Am J Physiol Cell Physiol

Species referenced: Xenopus laevis
Genes referenced: cav2
GO keywords: voltage-gated channel activity

Disease Ontology terms: episodic ataxia type 2