Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Gen Physiol 2000 Jan 01;1151:51-8.
Show Gene links Show Anatomy links

The lipid-protein interface of a Shaker K(+) channel.

Hong KH , Miller C .

Tryptophan-substitution mutagenesis was applied to the first and third transmembrane segments (S1 and S3) of a Shaker-type K(+) channel for the purpose of ascertaining whether these sequences are alpha-helical. Point mutants were examined for significant functional changes, indicated by the voltage-activation curves and gating kinetics. Helical periodicity of functional alteration was observed throughout the entire S1 segment. A similar result was obtained with the first 14 residues of S3, but this periodicity disappeared towards the extracellular side of this transmembrane sequence. In both helical stretches, tryptophan-tolerant positions are clustered on approximately half the alpha-helix surface, as if the sidechains are exposed to the hydrocarbon region of the lipid bilayer. These results, combined with an analogous study of S2 (Monks, S., D.J. Needleman, and C. Miller. 1999. J. Gen. Physiol. 113:415-423), locate S1, S2, and S3 on the lipid-facing periphery of K(v) channels.

PubMed ID: 10613918
PMC ID: PMC1887780
Article link:
Grant support: [+]

Species referenced: Xenopus
Genes referenced: tbx2

Article Images: [+] show captions
References [+] :
Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. 1997, Pubmed