Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-18715
Neuropharmacology January 1, 1996; 35 (9-10): 1355-63.
Show Gene links Show Anatomy links

Modulation of GABAA receptor function by G protein-coupled 5-HT2C receptors.

Huidobro-Toro JP , Valenzuela CF , Harris RA .


Abstract
Two classical neurotransmitters, 5-hydroxytryptamine (5-HT) and GABA, coexist in neurons of the medulla oblongata, and activation of 5-HT receptors modulates GABAA receptor function in neurons of the ventral tegmental area, substantia nigra and cerebellum. We now report that activation of 5-HT2C receptors produces a long-lasting (20-90 min) inhibition of GABAA receptors in Xenopus oocytes coexpressing both types of receptors 5-HT2C receptors caused a approximately 60% decrease in the GABAA receptor Emax without affecting the EC50 or Hill coefficient. Intracellular microinjection of 500 microM BAPTA blocked, whereas microinjection of inositol 1,4,5-triphosphate mimicked the inhibitory action of 5-HT2C receptors. The inhibition was independent of the GABAA receptors subunit composition; receptors containing alpha 2 beta 1, alpha 1 beta 1 gamma 2L, and alpha 2 beta 1 gamma 2S were inhibited to the same extent by 5-HT2C receptor activation. Moreover, GABAA receptors composed of wild-type alpha 2 plus mutant beta 1(S409A) subunits were inhibited to the same extent as wild-type receptors. The nonspecific protein kinase inhibitor, staurosporine, and the inhibitor of serine/threonine protein phosphatases, calyculin A, did not block the inhibitory effects of 5-HT2C receptors. The results with these inhibitors, taken together with those obtained with GABAA receptors with different subunit compositions, suggest that protein kinases or serine/threonine phosphatases are not involved in this GABAA receptor modulatory process. Thus, we propose that 5-HT2C receptors inhibit GABAA receptors by a Ca(2+)-dependent, but phosphorylation independent, mechanism and that 5-HT and GABA may act as cotransmitters to regulate neuronal activity. Furthermore, disruption of the cross-talk between these receptors may play a role in the anti-anxiety actions of 5-HT2 receptor antagonists.

PubMed ID: 9014152
Article link: Neuropharmacology
Grant support: [+]

Species referenced: Xenopus laevis
Genes referenced: gabarap htr2c