Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-21995
J Immunol 1993 Nov 15;15110:5376-86.
Show Gene links Show Anatomy links

Isolation of a classical MHC class I cDNA from an amphibian. Evidence for only one class I locus in the Xenopus MHC.

Shum BP , Avila D , Du Pasquier L , Kasahara M , Flajnik MF .


???displayArticle.abstract???
The amphibian Xenopus is an ectothermic vertebrate in which the MHC has been studied extensively at the functional, biochemical, and genetic levels. A cDNA clone corresponding to the MHC class la gene (Xela-UAA1f) of Xenopus laevis was isolated by screening a cDNA phage library with oligonucleotides based on NH2-terminal protein sequence. Three pieces of evidence support its status as a class la gene: 1) Previous biochemical data suggested that only one polymorphic class la molecule is expressed per MHC haplotype in X. laevis. NH2-terminal sequencing of the class I protein encoded by the f haplotype showed a single unambiguous sequence of the first 22 amino acids; the deduced protein sequence of the cDNA clone matches precisely to this peptide sequence; 2) Genes that hybridized to the cDNA clone segregated perfectly with the serologically typed MHC in two family studies; and 3) There is a strong conservation of amino acids in the peptide-binding region that have been shown in mammals to dock peptides at their NH2- and COOH-termini. In contrast to all other species that have been examined, there appears to be only one class I locus present in the MHC of X. laevis. Xenopus speciates by allopolyploidization, and there are Xenopus species with different levels of ploidy (2n-12n). Functionally, the MHC has been shown to be "diploidized" in most Xenopus species. As in previous studies with MHC class II and HSP70 probes, there is a trend toward maintaining a diploid number of class la genes in all Xenopus species regardless of their chromosome number, probably accomplished through a deletional mechanism. Thus, there is a strong pressure in Xenopus to maintain very few MHC-linked class I genes, exemplified both by the number of class I genes per MHC haplotype and by the number of class la genes per organism.

???displayArticle.pubmedLink??? 8228232
???displayArticle.link??? J Immunol
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: hsp70 hspa1l mhc1a myh6