Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-2230
Dev Genes Evol 2005 Jun 01;2156:275-84. doi: 10.1007/s00427-005-0474-0.
Show Gene links Show Anatomy links

Choice of either beta-catenin or Groucho/TLE as a co-factor for Xtcf-3 determines dorsal-ventral cell fate of diencephalon during Xenopus development.

Tsuji S , Hashimoto C .


???displayArticle.abstract???
Co-repressor Groucho/Transducin-Like Enhancer of split (TLE) interacts with transcription factors that are expressed in the central nervous system (CNS), and regulates transcriptional activities. In this study, we examined the contribution of Groucho/TLE to CNS development in Xenopus. The functional inhibition of Groucho/TLE using the WRPW motif as a competitor resulted in the conversion of the ventral cell into the dorsal fate in the prospective diencephalon. We also found that the neural plate was expanded laterally without inhibiting neural crest development. In tailbud, the disturbance of trigeminal ganglion development was observed. These observations allow us to conclude that Groucho/TLE plays important roles in the induction and patterning of distinct CNS territories. We found that Xtcf-3 is involved in some of the patterning in these territories. We generated the variant of Xtcf-3, Xtcf-3BDN-, which is suspected to interfere with the interaction between endogenous Groucho/TLE and Xtcf-3. The transcriptional activation of the Xtcf-3-target genes in response to endogenous Wnt/beta-catenin signaling by the overexpression of Xtcf-3BDN- led to a reduction of the ventral diencephalon. This result indicates that transcriptional repression by the Groucho/TLE-Xtcf-3 complex is important for ventral diencephalon patterning. This idea is supported by the finding that the overexpression of the dominant-negative form of Xtcf-3 or axil causes the expansion of the ventral diencephalon. Based on these data, we propose that the localized activation of Wnt/beta-catenin signaling, which converts Tcf from a repressor to an activator, is required for the establishment of dorsal-ventral patterning in the prospective diencephalon.

???displayArticle.pubmedLink??? 15747128
???displayArticle.link??? Dev Genes Evol


Species referenced: Xenopus
Genes referenced: axin2l gnat1 tcf7l1

References [+] :
Baker, Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. 1999, Pubmed, Xenbase