Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-23193
Science 1992 Nov 13;2585085:1152-5.
Show Gene links Show Anatomy links

A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels.

Heginbotham L , Abramson T , MacKinnon R .


???displayArticle.abstract???
The overall sequence similarity between the voltage-activated K+ channels and cyclic nucleotide-gated ion channels from retinal and olfactory neurons suggests that they arose from a common ancestor. On the basis of sequence comparisons, mutations were introduced into the pore of a voltage-activated K+ channel. These mutations confer the essential features of ion conduction in the cyclic nucleotide-gated ion channels; the mutant K+ channels display little selectivity among monovalent cations and are blocked by divalent cations. The property of K+ selectivity is related to the presence of two amino acids that are absent from the pore-forming region of the cyclic nucleotide-gated channels. These data demonstrate that very small differences in the primary structure of an ion channel can account for extreme functional diversity, and they suggest a possible connection between the pore-forming regions of K+, Ca2+, and cyclic nucleotide-gated ion channels.

???displayArticle.pubmedLink??? 1279807
???displayArticle.link??? Science
???displayArticle.grants??? [+]