Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-23342
Dev Biol 1992 Oct 01;1532:347-55. doi: 10.1016/0012-1606(92)90119-2.
Show Gene links Show Anatomy links

Inositol lipid hydrolysis contributes to the Ca2+ wave in the activating egg of Xenopus laevis.

Larabell C , Nuccitelli R .


???displayArticle.abstract???
We have used fluorescence ratio-imaging of fura-2 in the activating egg of Xenopus laevis to study the wave of increased intracellular free Ca2+ concentration ([Ca2+]i) while monitoring that of cortical granule exocytosis. Naturally matured eggs were dejellied, injected with fura-2, and activated by the iontophoresis of 1-30 nCoul of inositol-1,4,5-trisphosphate which triggers an immediate increase in free [Ca2+]i at the injection site. The Ca2+ rise spreads throughout the egg, reaching the opposite side in 5-8 min, and is followed by elevation of the fertilization envelope about 20-30 sec behind the [Ca2+]i wave. [Ca2+]i returns to preactivation levels within about 20 min after activation. We further studied the role of phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis by microinjecting antibodies to PIP2 into the egg. PIP2 antibodies did not alter the propagation velocity of the wave but greatly reduced the amount of Ca2+ released in the egg cortex. These data suggest that PIP2 hydrolysis plays a role in the release of [Ca2+]i in the outer regions of the egg following activation.

???displayArticle.pubmedLink??? 1327924
???displayArticle.link??? Dev Biol
???displayArticle.grants??? [+]