Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-25475
Mol Cell Biol 1990 Nov 01;1011:5849-56. doi: 10.1128/mcb.10.11.5849-5856.1990.
Show Gene links Show Anatomy links

Repair and recombination of X-irradiated plasmids in Xenopus laevis oocytes.

Sweigert SE , Carroll D .


???displayArticle.abstract???
Plasmid DNA substrates were X-irradiated and injected into the nuclei of Xenopus laevis oocytes. After incubation for 20 h, DNA was recovered from the oocytes and analyzed simultaneously for repair and for intermolecular homologous recombination by electrophoresis and bacterial transformation. Oocyte-mediated repair of DNA strand breaks was observed with both methods. Using a repair-deficient mutant Escherichia coli strain and its repair-proficient parent as hosts for the transformation assay, we also demonstrated that oocytes repaired oxidative-type DNA base damage induced by X-rays. X-irradiation of a circular DNA stimulated its potential to recombine with a homologous linear partner. Recombination products were detected directly by Southern blot hybridization and as bacterial transformant clones expressing two antibiotic resistance markers originally carried separately on the two substrates. The increase in recombination was dependent on X-ray dose. There is some suggestion that lesions other than double-strand breaks contribute to the stimulation of oocyte-mediated homologous recombination. In summary, oocytes have considerable capacity to repair X-ray-induced damage, and some X-ray lesions stimulate homologous recombination in these cells.

???displayArticle.pubmedLink??? 2233720
???displayArticle.pmcLink??? PMC361370
???displayArticle.link??? Mol Cell Biol


Species referenced: Xenopus laevis

References [+] :
Boyer, A complementation analysis of the restriction and modification of DNA in Escherichia coli. 1969, Pubmed