Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-26583
J Biol Chem 1989 Aug 15;26423:13524-30.
Show Gene links Show Anatomy links

Coupling of exogenous receptors to phospholipase C in Xenopus oocytes through pertussis toxin-sensitive and -insensitive pathways. Cross-talk through heterotrimeric G-proteins.

Moriarty TM , Sealfon SC , Carty DJ , Roberts JL , Iyengar R , Landau EM .


???displayArticle.abstract???
Heterotrimeric guanine nucleotide-binding proteins (G-proteins) can be categorized into molecularly divergent groups by their differential sensitivity to pertussis toxin. Receptors specifically use either pertussis toxin-sensitive or-insensitive G-proteins to couple to specific effectors. Receptor stimulation of phospholipase C, however, is pertussis toxin sensitive in some systems and pertussis toxin insensitive in others. We studied the coupling of receptors to phospholipase C by expressing receptors from both systems into a single cell, the Xenopus oocyte. [Arg8]Vassopressin (AVP) receptors from liver and cholecystokinin-8(sulfated) (CCK) receptors from brain were expressed in oocytes by intracellular injection of RNA. Both receptors stimulated a Ca2+-dependent Cl- current which can also be evoked by intracellular injection of inositol 1,4,5-tris-phosphate. Hence, receptor stimulation of phospholipase C was measured as the evoked Ca2+-dependent Cl- current. The liver AVP receptor, which is known to stimulate phospholipase C in a pertussis toxin-insensitive manner (Lynch, C. J., Prpic, V., Blackmore, P. F., and Exton, J. H. (1986) Mol. Pharmacol. 29, 196-203), was found to stimulate phospholipase C through a pertussis toxin-sensitive pathway in the Xenopus oocyte. The CCK receptor from brain stimulated phospholipase C through a pertussis toxin-insensitive pathway. Both AVP and CCK stimulation of phospholipase C were attenuated by the intracellular injection of excess G-protein beta gamma subunits. Neither pertussis toxin treatment nor intracellular injection of beta gamma subunits affected any steps subsequent to inositol 1,4,5-tris-phosphate production. From these data we conclude that both the pertussis toxin-sensitive and -insensitive pathways for receptor coupling to phospholipase C are transduced by heterotrimeric G-proteins. We also find that there is a lack of coupling fidelity of receptors to G-proteins in stimulation of phospholipase C which can be influenced by the membrane environment.

???displayArticle.pubmedLink??? 2474532
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: avp cck