Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-3503
Dev Dyn June 1, 2004; 230 (2): 229-38.
Show Gene links Show Anatomy links

Short upstream region drives dynamic expression of hypoxia-inducible factor 1alpha during Xenopus development.

Sipe CW , Gruber EJ , Saha MS .


Abstract
Hypoxia-inducible factor 1alpha (HIF-1alpha) plays a central role in regulating oxygen-dependent gene expression and is involved in a range of pathways implicated in cellular survival, proliferation, and development. While the posttranslational regulation of HIF-1alpha is well characterized, the relative importance of its control at the transcriptional level during development remains less clear. Although the mouse and human promoter regions have been analyzed in vitro, to date, there has been no in vivo analysis of any vertebrate HIF-1alpha promoter. To investigate the transcriptional regulation of HIF-1alpha during development of the amphibian Xenopus laevis, we have described the gene''s expression pattern and isolated the xHIF-1alpha upstream regulatory regions. We show xHIF-1alpha mRNA to be constitutively expressed at low levels throughout embryogenesis, but with significant up-regulation during gastrula stages, and subsequently, in specific regions of the central nervous system and axial tissues. Our functional analysis using a series of truncated xHIF-1alpha promoter constructs demonstrates that a 173-bp region of the proximal promoter, which is 100% conserved among five allelic variants, is sufficient to drive correct expression in transgenic embryos. Although these results are corroborated by a parallel set of in vitro transfection experiments in a Xenopus cell line, some key differences suggest the importance of using transgenic methods in conjunction with in vitro assays.

PubMed ID: 15162502
Article link: Dev Dyn
Grant support: [+]

Species referenced: Xenopus laevis
Genes referenced: hif1a


Article Images: [+] show captions