Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Comp Biochem Physiol A Mol Integr Physiol 2007 Nov 01;1483:621-8. doi: 10.1016/j.cbpa.2007.08.003.
Show Gene links Show Anatomy links

Cellular distribution of Mr 25,000 protein, a protein partially overlapping phosvitin and lipovitellin 2 in vitellogenin B1, and yolk proteins in Xenopus laevis oocytes and embryos.

A phosphorylated protein with molecular mass of 25,000 (pp25) can be derived from Xenopus laevis vitellogenin B1. In order to clarify the distribution of pp25, the changes in the concentration and localization of this protein in oocytes and embryos were examined by immunoblotting and immunohistochemistry using anti-pp25 antibodies, and compared with those of yolk proteins. In oocytes, pp25 was shown to localize characteristically at the surface just below the plasma membrane by immunohistochemical analysis. Interestingly, during embryogenesis, immunocytochemical staining revealed a transition of the pp25 distribution from beneath the outer surface of each germ layers to endoderm during tailbudding. In contrast, yolk proteins were localized in endoderm constantly throughout the developmental stages. However, the level of pp25 in the cytoplasm gradually decreased following the growth of embryos at the tailbud stage and disappeared at the tadpole stage, as shown by immunoblot analysis. These results suggest that pp25 could play different roles from those of yolk proteins such as lipovitellin and phosvitin in X. laevis oocytes and developing embryos.

PubMed ID: 17804270
Article link: Comp Biochem Physiol A Mol Integr Physiol

Species referenced: Xenopus laevis
Genes referenced: vtga2 vtgb1