Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-37111
J Physiol March 15, 2008; 586 (6): 1539-47.
Show Gene links Show Anatomy links

Up-regulation of hypertonicity-activated myo-inositol transporter SMIT1 by the cell volume-sensitive protein kinase SGK1.

Klaus F , Palmada M , Lindner R , Laufer J , Jeyaraj S , Lang F , Boehmer C .


Abstract
Mechanisms of regulatory cell volume increase following cell shrinkage include accumulation of organic osmolytes such as betaine, taurine, sorbitol, glycerophosphorylcholine (GPC) and myo-inositol. Myo-inositol is taken up by the sodium-myo-inositol-transporter SMIT1 (SLC5A3) expressed in a wide variety of cell types. Hypertonicity induces the transcription of the SMIT1 gene upon binding of the transcription factor tonicity enhancer binding protein (TonEBP) to tonicity responsive enhancers (TonE) in the SMIT1 promoter region. However, little is known about post-translational regulation of the carrier protein. In this study we show that SMIT1 is modulated by the serum- and glucocorticoid-inducible kinase SGK1, a protein genomically up-regulated by hypertonicity. As demonstrated by two-electrode voltage-clamp in the Xenopus oocyte expression system, SMIT1-mediated myo-inositol-induced currents are up-regulated by coexpression of wild type SGK1 and constitutively active (S422D)SGK1 but not by inactive (K127N)SGK1. The increase in SMIT1 activity is due to an elevated cell surface expression of the carrier while its kinetic properties remain unaffected. According to the decay of SMIT1 activity in the presence of brefeldin A, SGK1 stabilizes the SMIT1 protein in the plasma membrane. The SGK isoforms SGK2, SGK3 and the closely related protein kinase B (PKB) are similarly capable of activating SMIT1 activity. SMIT1-mediated currents are decreased by coexpression of the ubiquitin-ligase Nedd4-2, an effect counteracted by additional coexpression of SGK1. In conclusion, the present observations disclose SGK isoforms and protein kinase B as novel regulators of SMIT1 activity.

PubMed ID: 18202099
PMC ID: PMC2375683
Article link: J Physiol


Species referenced: Xenopus laevis
Genes referenced: akt1 gypc nedd4 nedd4l nfat5 sgk1 sgk2 sgk3 slc5a3

References [+] :
Alessi, Mechanism of activation of protein kinase B by insulin and IGF-1. 1997, Pubmed