Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-38984
J Exp Biol 2009 Jan 01;212Pt 2:249-56. doi: 10.1242/jeb.019703.
Show Gene links Show Anatomy links

Localization and regulation of a facilitative urea transporter in the kidney of the red-eared slider turtle (Trachemys scripta elegans).

Uchiyama M , Kikuchi R , Konno N , Wakasugi T , Matsuda K .


???displayArticle.abstract???
Urea is the major excretory end product of nitrogen metabolism in most chelonian reptiles. In the present study, we report the isolation of a 1632 base pair cDNA from turtle kidney with one open reading frame putatively encoding a 403-residue protein, the turtle urea transporter (turtle UT). The first cloned reptilian UT has high homology with UTs (facilitated urea transporters) cloned from vertebrates, and most closely resembles the UT-A subfamily. Injection of turtle UT cRNA into Xenopus oocytes induced a 6-fold increase in [(14)C]urea uptake that was inhibited by phloretin. The turtle UT mRNA expression and tissue distribution were examined by RT-PCR with total RNA from various tissues. Expression of turtle UT mRNA was restricted to the kidney, and no signal was detected in the other tissues, such as brain, heart, alimentary tract and urinary bladder. An approximately 58 kDa protein band was detected in membrane fractions of the kidney by western blot using an affinity-purified antibody that recognized turtle UT expressed in Xenopus oocytes. In an immunohistochemical study using the anti-turtle UT antibody, UT-immunopositive cells were observed along the distal tubule but not in the collecting duct. In turtles under dry conditions, plasma osmolality and urea concentration increased, and using semi-quantitative RT-PCR the UT mRNA expression level in the kidney was found to increase 2-fold compared with control. The present results, taken together, suggest that the turtle UT probably contributes to urea transport in the distal tubule segments of the kidney in response to hyperosmotic stress under dry conditions.

???displayArticle.pubmedLink??? 19112144
???displayArticle.link??? J Exp Biol