Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-41968
Gen Comp Endocrinol 2010 Nov 01;1692:123-9. doi: 10.1016/j.ygcen.2010.08.010.
Show Gene links Show Anatomy links

BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression.

Kuribara M , Eijsink VD , Roubos EW , Jenks BG , Scheenen WJ .


???displayArticle.abstract???
Pituitary melanotrope cells of the amphibian Xenopus laevis are neuroendocrine cells regulating the animal's skin color adaptation through secretion of α-melanophore-stimulating hormone (α-MSH). To fulfill this function optimally, the melanotrope cell undergoes plastic changes in structure and secretory activity in response to changed background light conditions. Xenopus melanotrope cells display Ca(2+) oscillations that are thought to drive α-MSH secretion and gene expression. They also produce brain-derived neurotrophic factor (BDNF), which stimulates in an autocrine way the biosynthesis of the α-MSH precursor, pro-opiomelanocortin (POMC). We have used this physiological adaptation mechanism as a model to investigate the role of BDNF in the regulation of Ca(2+) kinetics and Ca(2+)-dependent gene expression. By dynamic video imaging of isolated cultured melanotropes we demonstrated that BDNF caused a dose-dependent increase in Ca(2+) oscillation frequency up to 64.7±2.3% of control level. BDNF also induced a transient Ca(2+) peak in Ca(2+)-free medium, which was absent when calcium stores were blocked by thapsigargin and 2-aminoethoxydiphenyl borate, indicating that BDNF stimulates acute release of Ca(2+) from IP(3)-sensitive intracellular Ca(2+) stores. Moreover, we show that thapsigargin inhibits the expression of BDNF transcript IV (by 61.1±28.8%) but does not affect POMC transcript. We conclude that BDNF mobilizes Ca(2+) from IP(3)-sensitive intracellular Ca(2+) stores and propose the possibility that the resulting Ca(2+) oscillations selectively stimulate expression of the BDNF gene.

???displayArticle.pubmedLink??? 20736010
???displayArticle.link??? Gen Comp Endocrinol


Species referenced: Xenopus laevis
Genes referenced: bdnf itpr1 pomc


???attribute.lit??? ???displayArticles.show???