Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Mech Dev 2012 Jan 01;1299-12:263-74. doi: 10.1016/j.mod.2012.07.001.
Show Gene links Show Anatomy links

High mobility group B proteins regulate mesoderm formation and dorsoventral patterning during zebrafish and Xenopus early development.

Cao JM , Li SQ , Zhang HW , Shi DL .

The high mobility group (HMG) proteins constitute a superfamily of nuclear proteins that regulate the expression of a wide range of genes through architectural remodeling of the chromatin structure, and the formation of multiple protein complexes on promoter/enhancer regions, but their function in germ layer specification during early development is not clear. Here we show that hmgb genes regulate mesoderm formation and dorsoventral patterning both in zebrafish and Xenopus early embryos. Overexpression of hmgb3 blocks the expression of the pan-mesoderm gene no tail/Xbra and other ventrolateral mesoderm genes, and results in embryos with shortened anteroposterior axis, while overexpression of hmgb3EnR, which contains the engrailed repressor domain, most potently repressed no tail expression and mesoderm formation. However, hmgb3VP16, which contains the transcriptional activation domain of VP16, had an opposite effect, indicating that hmgb3 may function as a repressor during mesoderm induction and patterning. In addition, we show that hmgb3 inhibits target gene expression downstream of mesoderm-inducing factors. Furthermore, using reporter gene assays in Xenopus whole embryos, we show that hmgb3 differentially regulates the activation of various mesendoderm reporter genes. In particular, it up-regulates the goosecoid, but inhibits the Xbra reporter gene activation. Therefore, our results suggest that hmgb genes may function to fine-tune the specification and/or dorsoventral patterning of mesoderm during zebrafish and Xenopus development.

PubMed ID: 22820002
Article link: Mech Dev

Species referenced: Xenopus
Genes referenced: fn1 foxi1 gsc hmgb3 krt12.4 sox2 sox3 tbxt wnt8a

Article Images: [+] show captions