Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-4581
Biochem J 2004 Jan 15;377Pt 2:499-507. doi: 10.1042/BJ20031449.
Show Gene links Show Anatomy links

Tyr-298 in ephrinB1 is critical for an interaction with the Grb4 adaptor protein.

Bong YS , Park YH , Lee HS , Mood K , Ishimura A , Daar IO .


Abstract
The Eph family of receptor tyrosine kinases and their membrane-bound ligands, the ephrins, are thought to play a role in the regulation of cell adhesion and migration during development by mediating cell-to-cell signalling events. The transmembrane ephrinB protein is a bidirectional signalling molecule that sends a forward signal through the activation of its cognate receptor tyrosine kinase residing on another cell. The reverse signal is transduced into the ephrinB-expressing cell via tyrosine phosphorylation of its conserved C-terminal cytoplasmic domain. Previous work from our laboratory has implicated the activated FGFR1 (fibroblast growth factor receptor 1) as a regulator of a de-adhesion signal that results from overexpression of ephrinB1. In the present study, we report the isolation of Xenopus Grb4 (growth-factor-receptor-bound protein 4), an ephrinB1-interacting protein, and we show that when expressed in Xenopus oocytes, ephrinB1 interacts with Grb4 in the presence of an activated FGFR1. Amino acid substitutions were generated in Grb4, and the resulting mutants were expressed along with ephrinB1 and an activated FGFR in Xenopus oocytes. Co-immunoprecipitation analysis shows that the FLVR motif within the Src homology 2 domain of Xenopus Grb4 is vital for this phosphorylation-dependent interaction with ephrinB1. More importantly, using deletion and substitution analysis we identify the tyrosine residue at position 298 of ephrinB1 as being required for the physical interaction with Grb4, whereas Tyr-305 and Tyr-310 are dispensable. Moreover, we show that the region between amino acids 301 and 304 of ephrinB1 is also required for this critical tyrosine-phosphorylation-dependent event.

PubMed ID: 14535844
PMC ID: PMC1223872
Article link: Biochem J


Species referenced: Xenopus laevis
Genes referenced: efnb1 fgfr1 nck2

References [+] :
Adams, Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. 1999, Pubmed