Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-47836
Subcell Biochem 2014 Jan 01;75:105-34. doi: 10.1007/978-94-007-7359-2_7.
Show Gene links Show Anatomy links

Carbonic anhydrases and their interplay with acid/base-coupled membrane transporters.

Becker HM , Klier M , Deitmer JW .


???displayArticle.abstract???
Carbonic anhydrases (CAs) have not only been identified as ubiquitous enzymes catalyzing the fast reversible hydration of carbon dioxide to generate or consume protons and bicarbonate, but also as intra- and extracellular proteins, which facilitate transport function of many acid/base transporting membrane proteins, coined 'transport metabolon'. Functional interaction between CAs and acid/base transporters, such as chloride/bicarbonate exchanger (AE), sodium-bicarbonate cotransporter (NBC) and sodium/hydrogen exchanger (NHE) has been shown to require both catalytic CA activity as well as direct binding of the enzyme to specific sites on the transporter. In contrast, functional interaction between different CA isoforms and lactate-proton-cotransporting monocarboxylate transporters (MCT) has been found to be isoform-specific and independent of CA catalytic activity, but seems to require an intramolecular proton shuttle within the enzyme. In this chapter, we review the various types of interactions between acid/base-coupled membrane carriers and different CA isoforms, as studied in vitro, in intact Xenopus oocytes, and in various mammalian cell types. Furthermore, we discuss recent findings that indicate the significance of these 'transport metabolons' for normal cell functions.

???displayArticle.pubmedLink??? 24146377
???displayArticle.link??? Subcell Biochem


Species referenced: Xenopus