Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-48613
Adv Drug Deliv Rev 2014 Apr 01;69-70:225-46. doi: 10.1016/j.addr.2014.02.004.
Show Gene links Show Anatomy links

Engineering Xenopus embryos for phenotypic drug discovery screening.

Schmitt SM , Gull M , Brändli AW .


???displayArticle.abstract???
Many rare human inherited diseases remain untreatable despite the fact that the disease causing genes are known and adequate mouse disease models have been developed. In vivo phenotypic drug screening relies on isolating drug candidates by their ability to produce a desired therapeutic phenotype in whole organisms. Embryos of zebrafish and Xenopus frogs are abundant, small and free-living. They can be easily arrayed in multi-well dishes and treated with small organic molecules. With the development of novel genome modification tools, such a zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas, it is now possible to efficiently engineer non-mammalian models of inherited human diseases. Here, we will review the rapid progress made in adapting these novel genome editing tools to Xenopus. The advantages of Xenopus embryos as in vivo models to study human inherited diseases will be presented and their utility for drug discovery screening will be discussed. Being a tetrapod, Xenopus complements zebrafish as an indispensable non-mammalian animal model for the study of human disease pathologies and the discovery of novel therapeutics for inherited diseases.

???displayArticle.pubmedLink??? 24576445
???displayArticle.link??? Adv Drug Deliv Rev