Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-5066
Phytomedicine 2003 Jan 01;105:416-21.
Show Gene links Show Anatomy links

Extracts from plants used in Mexican traditional medicine activate Ca(2+)-dependent chloride channels in Xenopus laevis oocytes.

Rojas A , Mendoza S , Moreno J , Arellano RO .


???displayArticle.abstract???
The two-electrode voltage-clamp technique was employed to investigate the effects of chloroform-methanol (1:1) extracts derived from five medicinal plants on Xenopus laevis oocytes. When evaluated at concentrations of 1 to 500 microg/ml, the extracts prepared from the aerial parts of Baccharis heterophylla H.B.K (Asteraceae), Chenopodium murale L. (Chenopodiaceae), Desmodium grahami Gray (Leguminosae) and Solanum rostratum Dun (Solanaceae) produced concentration-dependent oscillatory inward currents in the oocytes, while the extract of Gentiana spathacea did not induce any response. The reversal potential of the currents elicited by the active extracts was -17 +/- 2 mV and was similar to the chloride equilibrium potential in oocytes. These ionic responses were independent of extracellular calcium. However, they were eliminated by overnight incubation with BAPTA-AM (10 microM), suggesting that the currents were dependent on intracellular Ca2+ increase. Thus the plant extracts activate the typical oscillatory Ca(2+)-dependent Cl- currents generated in the Xenopus oocyte membrane more probably via a mechanism that involves release of Ca2+ from intracellular reservoirs. These observations suggest that Xenopus oocyte electrophysiological recording constitutes a suitable assay for the study of the mechanisms of action of herbal medicines.

???displayArticle.pubmedLink??? 12834007
???displayArticle.link??? Phytomedicine


Species referenced: Xenopus laevis
Genes referenced: adm