Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-54000
EMBO J 2017 Oct 16;3620:2987-2997. doi: 10.15252/embj.201796580.
Show Gene links Show Anatomy links

Epigenetic regulation of left-right asymmetry by DNA methylation.

Wang L , Liu Z , Lin H , Ma D , Tao Q , Liu F .


???displayArticle.abstract???
DNA methylation is a major epigenetic modification; however, the precise role of DNA methylation in vertebrate development is still not fully understood. Here, we show that DNA methylation is essential for the establishment of the left-right (LR) asymmetric body plan during vertebrate embryogenesis. Perturbation of DNA methylation by depletion of DNA methyltransferase 1 (dnmt1) or dnmt3bb.1 in zebrafish embryos leads to defects in dorsal forerunner cell (DFC) specification or collective migration, laterality organ malformation, and disruption of LR patterning. Knockdown of dnmt1 in Xenopus embryos also causes similar defects. Mechanistically, loss of dnmt1 function induces hypomethylation of the lefty2 gene enhancer and promotes lefty2 expression, which consequently represses Nodal signaling in zebrafish embryos. We also show that Dnmt3bb.1 regulates collective DFC migration through cadherin 1 (Cdh1). Taken together, our data uncover dynamic DNA methylation as an epigenetic mechanism to control LR determination during early embryogenesis in vertebrates.

???displayArticle.pubmedLink??? 28882847
???displayArticle.pmcLink??? PMC5641680
???displayArticle.link??? EMBO J


Species referenced: Xenopus
Genes referenced: cdh1 dnmt1 nodal

References [+] :
Amack, The T box transcription factor no tail in ciliated cells controls zebrafish left-right asymmetry. 2004, Pubmed