Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-54058
Pharmacol Rep 2017 Oct 01;695:1014-1020. doi: 10.1016/j.pharep.2017.03.001.
Show Gene links Show Anatomy links

Antidepressant, anticonvulsant and antinociceptive effects of 3'-methoxy-6-methylflavone and 3'-hydroxy-6-methylflavone may involve GABAergic mechanisms.

Karim N , Khan I , Ahmad N , Umar MN , Gavande N .


???displayArticle.abstract???
BACKGROUND: GABAA receptors have been implicated in the pathophysiology of depression, epilepsy and pain disorders. The purpose of this study was to investigate two novel synthetic flavones, 3'-methoxy-6-methylflavone (3'-MeO6MF) and 3'-hydroxy-6-methylflavone (3'-OH6MF), for their effect on GABAA receptors and subsequently investigate their antidepressant, anticonvulsant and antinociceptive effects. METHODS: Recombinant GABAA receptor subunits were expressed in Xenopus oocytes and a two electrode voltage clamp technique was used for electrophysiological studies. The antidepressant and anticonvulsant activities were determined using forced swim (FST) and tail suspension tests (TST) and bicuculline (BIC)-induced seizures respectively. Furthermore, the antinociceptive activity was determined using tail immersion and hot plate tests. RESULTS: 3'-MeO6MF and 3'-OH6MF potentiated GABA-induced currents through ternary α1-2β1-3γ2L and binary α1β2 receptors indicating that the positive modulation by these flavonoids is not dependent on the γ subunit. In behavioral studies, 3'-MeO6MF and 3'-OH6MF (10-100mg/kg, ip) exerted significant antidepressant like effects in the FST and TST. 3'-MeO6MF (10-100mg/kg) and 3'-OH6MF (30 and 100mg/kg) also exhibited significant anticonvulsant effects in BIC-induced seizures, and antinociceptive activity in tail immersion and hot plate tests (*p<0.05, **p<0.01, ***p<0.001). Furthermore, the antidepressant and antinociceptive activities of 3'-MeO6MF and 3'-OH6MF were partially ameliorated by co-administration of BIC (3mg/kg) suggesting the involvement of GABAergic mechanisms. CONCLUSION: The findings of this study suggest that 3'-MeO6MF and 3'-OH6MF exhibited significant antidepressant, anticonvulsant and antinociceptive effects mediated via interactions with GABAA receptors.

???displayArticle.pubmedLink??? 28943291
???displayArticle.link??? Pharmacol Rep


Species referenced: Xenopus
Genes referenced: fst gabarap tst

???displayArticle.disOnts??? pain disorder [+]