Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-55387
Nat Commun 2018 Oct 16;91:4296. doi: 10.1038/s41467-018-06614-2.
Show Gene links Show Anatomy links

Early redox activities modulate Xenopus tail regeneration.

Ferreira F , Raghunathan V , Luxardi G , Zhu K , Zhao M .


???displayArticle.abstract???
Redox state sustained by reactive oxygen species (ROS) is crucial for regeneration; however, the interplay between oxygen (O2), ROS and hypoxia-inducible factors (HIF) remains elusive. Here we observe, using an optic-based probe (optrode), an elevated and steady O2 influx immediately upon amputation. The spatiotemporal O2 influx profile correlates with the regeneration of Xenopus laevis tadpole tails. Inhibition of ROS production but not ROS scavenging decreases O2 influx. Inhibition of HIF-1α impairs regeneration and stabilization of HIF-1α induces regeneration in the refractory period. In the regeneration bud, hypoxia correlates with O2 influx, ROS production, and HIF-1α stabilization that modulate regeneration. Further analyses reveal that heat shock protein 90 is a putative downstream target of HIF-1α while electric current reversal is a de facto downstream target of HIF-1α. Collectively, the results show a mechanism for regeneration via the orchestration of O2 influx, ROS production, and HIF-1α stabilization.

???displayArticle.pubmedLink??? 30327466
???displayArticle.pmcLink??? PMC6191437
???displayArticle.link??? Nat Commun
???displayArticle.grants??? [+]

Genes referenced: hpse hsp90aa1.1 mrc1


???attribute.lit??? ???displayArticles.show???
References [+] :
Adams, H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. 2007, Pubmed, Xenbase