Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-56298
Planta 2019 Dec 01;2506:1911-1925. doi: 10.1007/s00425-019-03275-3.
Show Gene links Show Anatomy links

Identification of Shaker K+ channel family members in Rosaceae and a functional exploration of PbrKAT1.

Chen G , Chen Q , Qi K , Xie Z , Yin H , Wang P , Wang R , Huang Z , Zhang S , Wang L , Wu J .


???displayArticle.abstract???
MAIN CONCLUSION: PbrKAT1, which is inhibited by external Na+ in Xenopus laevis oocytes, is characterized as encoding a typical inward rectifying channel that is mainly expressed in guard cells. Potassium (K+) is the most abundant cation in plant cells necessary for plant growth and development. The uptake and transport of K+ are mainly completed through transporters and channels, and the Shaker family genes are the most studied K+ channels in plants. However, there is far less information about this family in Rosaceae species. We performed a genome-wide analysis and identified Shaker K+ channel gene family members in Rosaceae. We cloned and characterized a Shaker K+ channel KAT1 from pear (Pyrus × bretschneideri). In total, 36 Shaker K+ channel genes were identified from Rosaceae species and were classified into five subgroups based on structural characteristics and a phylogenetic analysis. Whole-genome and dispersed duplications were the primary forces underlying Shaker K+ channel gene family expansion in Rosaceae, and purifying selection played a key role in the evolution of Shaker K+ channel genes. β-Glucuronidase and qRT-PCR assays revealed that PbrKAT1 was mainly expressed in leaves, especially in guard cells. PbrKAT1 displayed a typical inward-rectifying current when expressed in Xenopus laevis oocytes. The activity of PbrKAT1 was inhibited by external sodium ions, possibly playing an important role in the regulation of salt tolerance in pear. These results provide valuable information on evolution, expression and functions of the Shaker K+ channel gene family in plants.

???displayArticle.pubmedLink??? 31523779
???displayArticle.link??? Planta
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: kyat1

References [+] :
Anderson, Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. 1992, Pubmed