Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-56949
J Gen Physiol February 4, 2019; 151 (2): 247-257.
Show Gene links Show Anatomy links

Epilepsy-associated mutations in the voltage sensor of KCNQ3 affect voltage dependence of channel opening.

Barro-Soria R .


Abstract
One of the major factors known to cause neuronal hyperexcitability is malfunction of the potassium channels formed by KCNQ2 and KCNQ3. These channel subunits underlie the M current, which regulates neuronal excitability. Here, I investigate the molecular mechanisms by which epilepsy-associated mutations in the voltage sensor (S4) of KCNQ3 cause channel malfunction. Voltage clamp fluorometry reveals that the R230C mutation in KCNQ3 allows S4 movement but shifts the open/closed transition of the gate to very negative potentials. This results in the mutated channel remaining open throughout the physiological voltage range. Substitution of R230 with natural and unnatural amino acids indicates that the functional effect of the arginine residue at position 230 depends on both its positive charge and the size of its side chain. I find that KCNQ3-R230C is hard to close, but it is capable of being closed at strong negative voltages. I suggest that compounds that shift the voltage dependence of S4 activation to more positive potentials would promote gate closure and thus have therapeutic potential.

PubMed ID: 30578330
PMC ID: PMC6363412
Article link: J Gen Physiol
Grant support: [+]

Species referenced: Xenopus
Genes referenced: kcnq2 kcnq3

Disease Ontology terms: epilepsy

Article Images: [+] show captions
References [+] :
Aggarwal, Contribution of the S4 segment to gating charge in the Shaker K+ channel. 1996, Pubmed, Xenbase