Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-57031
FASEB J 2019 Oct 01;3310:11349-11363. doi: 10.1096/fj.201900485R.
Show Gene links Show Anatomy links

Cilantro leaf harbors a potent potassium channel-activating anticonvulsant.

Manville RW , Abbott GW .


???displayArticle.abstract???
Herbs have a long history of use as folk medicine anticonvulsants, yet the underlying mechanisms often remain unknown. Neuronal voltage-gated potassium channel subfamily Q (KCNQ) dysfunction can cause severe epileptic encephalopathies that are resistant to modern anticonvulsants. Here we report that cilantro (Coriandrum sativum), a widely used culinary herb that also exhibits antiepileptic and other therapeutic activities, is a highly potent KCNQ channel activator. Screening of cilantro leaf metabolites revealed that one, the long-chain fatty aldehyde (E)-2-dodecenal, activates multiple KCNQs, including the predominant neuronal isoform, KCNQ2/KCNQ3 [half maximal effective concentration (EC50), 60 ± 20 nM], and the predominant cardiac isoform, KCNQ1 in complexes with the type I transmembrane ancillary subunit (KCNE1) (EC50, 260 ± 100 nM). (E)-2-dodecenal also recapitulated the anticonvulsant action of cilantro, delaying pentylene tetrazole-induced seizures. In silico docking and mutagenesis studies identified the (E)-2-dodecenal binding site, juxtaposed between residues on the KCNQ S5 transmembrane segment and S4-5 linker. The results provide a molecular basis for the therapeutic actions of cilantro and indicate that this ubiquitous culinary herb is surprisingly influential upon clinically important KCNQ channels.-Manville, R. W., Abbott, G. W. Cilantro leaf harbors a potent potassium channel-activating anticonvulsant.

???displayArticle.pubmedLink??? 31311306
???displayArticle.pmcLink??? PMC6766653
???displayArticle.link??? FASEB J
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: kcnq1

References [+] :
Abbott, KCNQ1, KCNE2, and Na+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability. 2014, Pubmed, Xenbase