Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-6222
J Membr Biol 2002 Nov 01;1901:57-73. doi: 10.1007/s00232-002-1024-6.
Show Gene links Show Anatomy links

Presteady-state and steady-state kinetics and turnover rate of the mouse gamma-aminobutyric acid transporter (mGAT3).

Sacher A , Nelson N , Ogi JT , Wright EM , Loo DD , Eskandari S .


???displayArticle.abstract???
We expressed mouse gamma-aminobutyric acid (GABA) transporter (mGAT3) in Xenopus laevis oocytes and examined its steady-state and presteady-state kinetics and turnover rate by using tracer flux and electrophysiological methods. In oocytes expressing mGAT3, GABA evoked a Na+-dependent and Cl(-)-facilitated inward current. The dependence on Na+ was absolute, whereas that for Cl(-) was not. At a membrane potential of -50 mV, the half-maximal concentrations for Na+, Cl(-), and GABA were 14 mM, 5 mM, and 3 microM. The Hill coefficient for GABA activation and Cl(-) enhancement of the inward current was 1, and that for Na+ activation was > or =2. The GABA-evoked inward current was directly proportional to GABA influx (2.2 +/- 0.1 charges/GABA) into cells, indicating that under these conditions, there is tight ion/GABA coupling in the transport cycle. In response to step changes in the membrane voltage and in the absence of GABA, mGAT3 exhibited presteady-state current transients (charge movements). The charge-voltage (Q-V) relation was fitted with a single Boltzmann function. The voltage at half-maximal charge (V(0.5)) was +25 mV, and the effective valence of the moveable charge (zdelta) was 1.6. In contrast to the ON transients, which relaxed with a time constant of < or =30 msec, the OFF transients had a time constant of 1.1 sec. Reduction in external Na+ ([Na+]o) and Cl(-) ([Cl(-)]o) concentrations shifted the Q-V relationship to negative membrane potentials. At zero [Na+]o (106 mM Cl(-)), no mGAT3-mediated transients were observed, and at zero [Cl(-)]o (100 mM Na+), the charge movements decreased to approximately 30% of the maximal charge (Q(max)). GABA led to the elimination of charge movements. The half-maximal concentrations for Na+ activation, Cl(-) enhancement, and GABA elimination of the charge movements were 48 mM, 19 mM, and 5 mM, respectively. Q(max) and I(max) obtained in the same cells yielded the mGAT3 turnover rate, 1.7 sec(-1) at -50 mV. The low turnover rate of mGAT3 may be due to the slow return of the empty transporter from the internal to the external membrane surface.

???displayArticle.pubmedLink??? 12422272
???displayArticle.link??? J Membr Biol
???displayArticle.grants??? [+]