Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Search Papers



Filter by Date: Year(4-digits)   to 

Results Per Page


Alphabetic Search:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Can't find an article you're looking for? Click here to manually add an article by PubMed ID.


Results 1 - 50 of 859 results

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

( Denotes literature images)
Search Results

Xenopus Oocytes as a Powerful Cellular Model to Study Foreign Fully-Processed Membrane Proteins., Ivorra I, Alberola-Die A, Cobo R, González-Ros JM, Morales A., Membranes (Basel). October 11, 2022; 12 (10):             


Xenopus Husbandry., Harland RM, Sive H., Cold Spring Harb Protoc. September 27, 2022;


Xenobots: Applications in Drug discovery., Solanki N, Mahant S, Patel S, Patel MP, Shah U, Patel A, Koria H, Patel A., Curr Pharm Biotechnol. April 30, 2022;


Xenopus Oocytes: A Tool to Decipher Molecular Specificity of Insecticides towards Mammalian and Insect GABA-A Receptors., Bertaud A, Cens T, Mary R, Rousset M, Arel E, Thibaud JB, Vignes M, Ménard C, Dutertre S, Collet C, Charnet P., Membranes (Basel). April 19, 2022; 12 (5):


Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration., Suzuki S, Sasaki K, Fukazawa T, Kubo T., Sci Rep. February 3, 2022; 12 (1): 1903.                      


Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network., Wu Y, Devotta A, José-Edwards DS, Kugler JE, Negrón-Piñeiro LJ, Braslavskaya K, Addy J, Saint-Jeannet JP, Di Gregorio A., Elife. January 20, 2022; 11                             


Xenopus Tadpole Craniocardiac Imaging Using Optical Coherence Tomography., Deniz E, Mis EK, Lane M, Khokha MK., Cold Spring Harb Protoc. January 1, 2022; 2022 (5): Pdb.prot105676.


Xenogeneic Sertoli cells modulate immune response in an evolutionary distant mouse model through the production of interleukin-10 and PD-1 ligands expression., Vegrichtova M, Hajkova M, Porubska B, Vasek D, Krylov V, Tlapakova T, Krulova M., Xenotransplantation. January 1, 2022; 29 (3): e12742.


Xenopus Dusp6 modulates FGF signaling to precisely pattern pre-placodal ectoderm., Tsukano K, Yamamoto T, Watanabe T, Michiue T., Dev Biol. January 1, 2022; 488 81-90.                          


Xenopus Explants and Transplants., Moody SA., Cold Spring Harb Protoc. October 19, 2021;


Xenopus chip for single-egg trapping, in vitro fertilization, development, and tadpole escape., Nam SW, Chae JP, Kwon YH, Son MY, Bae JS, Park MJ., Biochem Biophys Res Commun. September 10, 2021; 569 29-34.


Xenopus laevis tadpoles exposed to metamifop: Changes in growth, behavioral endpoints, neurotransmitters, antioxidant system and thyroid development., Liu R, Qin Y, Diao J, Zhang H., Ecotoxicol Environ Saf. September 1, 2021; 220 112417.                


Xenopus, a Model to Study Wound Healing and Regeneration: Experimental Approaches., Slater PG, Palacios M, Larraín J., Cold Spring Harb Protoc. August 2, 2021; 2021 (8):


Xenopus laevis Egg Extract Preparation and Live Imaging Methods for Visualizing Dynamic Cytoplasmic Organization., Cheng X, Ferrell JE., J Vis Exp. June 6, 2021; (172):


Xenopus laevis and human type 3 iodothyronine deiodinase enzyme cross-species sensitivity to inhibition by ToxCast chemicals., Mayasich SA, Korte JJ, Denny JS, Hartig PC, Olker JH, DeGoey P, O'Flanagan J, Degitz SJ, Hornung MW., Toxicol In Vitro. June 1, 2021; 73 105141.


Xenopus models suggest convergence of gene signatures on neurogenesis in autism., Brennand KJ, Talkowski ME., Neuron. March 3, 2021; 109 (5): 743-745.


Xenopus leads the way: Frogs as a pioneering model to understand the human brain., Exner CRT, Willsey HR., Genesis. February 1, 2021; 59 (1-2): e23405.          


Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia., Walentek P., Genesis. February 1, 2021; 59 (1-2): e23406.          


Xenopus to the rescue: A model to validate and characterize candidate ciliopathy genes., Rao VG, Kulkarni SS., Genesis. February 1, 2021; 59 (1-2): e23414.  


Xenopus Deep Cell Aggregates: A 3D Tissue Model for Mesenchymal-to-Epithelial Transition., Kim HY, Davidson LA., Methods Mol Biol. January 1, 2021; 2179 275-287.


Xenopus in revealing developmental toxicity and modeling human diseases., Gao J, Shen W., Environ Pollut. January 1, 2021; 268 (Pt B): 115809.


Xenopus neural tube closure: A vertebrate model linking planar cell polarity to actomyosin contractions., Matsuda M, Sokol SY., Curr Top Dev Biol. January 1, 2021; 145 41-60.


Xenopus, an emerging model for studying pathologies of the neural crest., Medina-Cuadra L, Monsoro-Burq AH., Curr Top Dev Biol. January 1, 2021; 145 313-348.


Xenopus as a platform for discovery of genes relevant to human disease., Kostiuk V, Khokha MK., Curr Top Dev Biol. January 1, 2021; 145 277-312.


Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis., Ismail T, Kim Y, Chae S, Ryu HY, Lee DS, Kwon TK, Park TJ, Kwon T, Lee HS., Antioxidants (Basel). December 12, 2020; 9 (12):               


X-box-binding protein 1 is required for pancreatic development in Xenopus laevis., Yang J, Liu X, Yuan F, Liu J, Li D, Wei L, Wang X, Yuan L., Acta Biochim Biophys Sin (Shanghai). December 11, 2020; 52 (11): 1215-1226.


XLF acts as a flexible connector during non-homologous end joining., Carney SM, Moreno AT, Piatt SC, Cisneros-Aguirre M, Lopezcolorado FW, Stark JM, Loparo JJ., Elife. December 8, 2020; 9                   


Xela DS2 and Xela VS2: Two novel skin epithelial-like cell lines from adult African clawed frog (Xenopus laevis) and their response to an extracellular viral dsRNA analogue., Bui-Marinos MP, Varga JFA, Vo NTK, Bols NC, Katzenback BA., Dev Comp Immunol. November 1, 2020; 112 103759.


Xvent-2 expression in regenerating Xenopus tails., Pshennikova ES, Voronina AS., Stem Cell Investig. July 20, 2020; 7 13.  


Xenopus: Experimental Access to Cardiovascular Development, Regeneration Discovery, and Cardiovascular Heart-Defect Modeling., Hoppler S, Conlon FL., Cold Spring Harb Perspect Biol. June 1, 2020; 12 (6):


Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway., Solini GE, Pownall ME, Hillenbrand MJ, Tocheny CE, Paudel S, Halleran AD, Bianchi CH, Huyck RW, Saha MS., Dev Biol. April 15, 2020; 460 (2): 99-107.        


Xenbase: deep integration of GEO & SRA RNA-seq and ChIP-seq data in a model organism database., Fortriede JD, Pells TJ, Chu S, Chaturvedi P, Wang D, Fisher ME, James-Zorn C, Wang Y, Nenni MJ, Burns KA, Lotay VS, Ponferrada VG, Karimi K, Zorn AM, Vize PD., Nucleic Acids Res. January 8, 2020; 48 (D1): D776-D782.      


Xenopus Interferon Complex: Inscribing the Amphibiotic Adaption and Species-Specific Pathogenic Pressure in Vertebrate Evolution?, Tian Y, Jennings J, Gong Y, Sang Y., Cells. December 26, 2019; 9 (1):     


Xenopus laevis as a Bioindicator of Endocrine Disruptors in the Region of Central Chile., Rojas-Hucks S, Gutleb AC, González CM, Contal S, Mehennaoui K, Jacobs A, Witters HE, Pulgar J., Arch Environ Contam Toxicol. October 1, 2019; 77 (3): 390-408.


Xenopus fraseri: Mr. Fraser, where did your frog come from?, Evans BJ, Gansauge MT, Stanley EL, Furman BLS, Cauret CMS, Ofori-Boateng C, Gvoždík V, Streicher JW, Greenbaum E, Tinsley RC, Meyer M, Blackburn DC., PLoS One. September 3, 2019; 14 (9): e0220892.          


X-linked α-thalassemia with mental retardation is downstream of protein kinase A in the meiotic cell cycle signaling cascade in Xenopus oocytes and is dynamically regulated in response to DNA damage†., O'Shea LC, Fair T, Hensey C., Biol Reprod. May 1, 2019; 100 (5): 1238-1249.


XMAP215 promotes microtubule-F-actin interactions to regulate growth cone microtubules during axon guidance in Xenopuslaevis., Slater PG, Cammarata GM, Samuelson AG, Magee A, Hu Y, Lowery LA., J Cell Sci. April 30, 2019; 132 (9):                       


Xenopus Oocyte''s Conductance for Bioactive Compounds Screening and Characterization., Cheikh A, Tabka H, Tlili Y, Santulli A, Bouzouaya N, Bouhaouala-Zahar B, Benkhalifa R., Int J Mol Sci. April 27, 2019; 20 (9):                           


Xenopus oocytes as a heterologous expression system for analysis of tight junction proteins., Vitzthum C, Stein L, Brunner N, Knittel R, Fallier-Becker P, Amasheh S., FASEB J. April 1, 2019; 33 (4): 5312-5319.


Xenopus slc7a5 is essential for notochord function and eye development., Katada T, Sakurai H., Mech Dev. February 1, 2019; 155 48-59.                


Xenopus tropicalis: Joining the Armada in the Fight Against Blood Cancer., Dimitrakopoulou D, Tulkens D, Van Vlierberghe P, Vleminckx K., Front Physiol. February 1, 2019; 10 48.    


Xenbase: Facilitating the Use of Xenopus to Model Human Disease., Nenni MJ, Fisher ME, James-Zorn C, Pells TJ, Ponferrada V, Chu S, Fortriede JD, Burns KA, Wang Y, Lotay VS, Wang DZ, Segerdell E, Chaturvedi P, Karimi K, Vize PD, Zorn AM., Front Physiol. February 1, 2019; 10 154.          


Xenopus Resources: Transgenic, Inbred and Mutant Animals, Training Opportunities, and Web-Based Support., Horb M, Wlizla M, Abu-Daya A, McNamara S, Gajdasik D, Igawa T, Suzuki A, Ogino H, Noble A, null null, Robert J, James-Zorn C, Guille M., Front Physiol. February 1, 2019; 10 387.        


Xenopus: Driving the Discovery of Novel Genes in Patient Disease and Their Underlying Pathological Mechanisms Relevant for Organogenesis., Hwang WY, Marquez J, Khokha MK., Front Physiol. February 1, 2019; 10 953.    


Xenopus laevis FGF16 activates the expression of genes coding for the transcription factors Sp5 and Sp5l., Elsy M, Rowbotham A, Lord H, Isaacs HV, Pownall ME., Int J Dev Biol. January 1, 2019; 63 (11-12): 631-639.            


Xenopus SOX5 enhances myogenic transcription indirectly through transrepression., Della Gaspera B, Chesneau A, Weill L, Charbonnier F, Chanoine C., Dev Biol. October 15, 2018; 442 (2): 262-275.                    


Xenopus laevis macrophage-like cells produce XCL-1, an intelectin family serum lectin that recognizes bacteria., Nagata S., Immunol Cell Biol. September 1, 2018; 96 (8): 872-878.


Xbra and Smad-1 cooperate to activate the transcription of neural repressor ventx1.1 in Xenopus embryos., Kumar S, Umair Z, Yoon J, Lee U, Kim SC, Park JB, Lee JY, Kim J., Sci Rep. July 30, 2018; 8 (1): 11391.                


Xpo7 is a broad-spectrum exportin and a nuclear import receptor., Aksu M, Pleiner T, Karaca S, Kappert C, Dehne HJ, Seibel K, Urlaub H, Bohnsack MT, Görlich D., J Cell Biol. July 2, 2018; 217 (7): 2329-2340.            


XMAP215 is a microtubule nucleation factor that functions synergistically with the γ-tubulin ring complex., Thawani A, Kadzik RS, Petry S., Nat Cell Biol. May 1, 2018; 20 (5): 575-585.

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next