Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Literature (24)
Literature for DOID 0060041: autism spectrum disorder

Xenbase Articles :
( Denotes literature images)
Functional significance of the kainate receptor GluR6(M836I) mutation that is linked to autism., Strutz-Seebohm N,Korniychuk G,Schwarz R,Baltaev R,Ureche ON,Mack AF,Ma ZL,Hollmann M,Lang F,Seebohm G, Cell Physiol Biochem. January 1, 2006; 18(4-5):1421-9778.
Microtransplantation of neurotransmitter receptors from postmortem autistic brains to Xenopus oocytes., Limon A,Reyes-Ruiz JM,Miledi R, Proc Natl Acad Sci U S A. August 5, 2008; 105(31):1091-6490.
Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets., Pratt KG,Khakhalin AS, Dis Model Mech. September 1, 2013; 6(5):1754-8411.
Valproate-induced neurodevelopmental deficits in Xenopus laevis tadpoles., James EJ,Gu J,Ramirez-Vizcarrondo CM,Hasan M,Truszkowski TL,Tan Y,Oupravanh PM,Khakhalin AS,Aizenman CD, J Neurosci. February 18, 2015; 35(7):1529-2401.
Genetically induced dysfunctions of Kir2.1 channels: implications for short QT3 syndrome and autism-epilepsy phenotype., Ambrosini E,Sicca F,Brignone MS,D'Adamo MC,Napolitano C,Servettini I,Moro F,Ruan Y,Guglielmi L,Pieroni S,Servillo G,Lanciotti A,Valvo G,Catacuzzeno L,Franciolini F,Molinari P,Marchese M,Grottesi A,Guerrini R,Santorelli FM,Priori S,Pessia M, Hum Mol Genet. September 15, 2014; 23(18):1460-2083.
Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits., Truszkowski TL,James EJ,Hasan M,Wishard TJ,Liu Z,Pratt KG,Cline HT,Aizenman CD, Neural Dev. January 1, 2016; 11(1):1749-8104.
Gain-of-function defects of astrocytic Kir4.1 channels in children with autism spectrum disorders and epilepsy., Sicca F,Ambrosini E,Marchese M,Sforna L,Servettini I,Valvo G,Brignone MS,Lanciotti A,Moro F,Grottesi A,Catacuzzeno L,Baldini S,Hasan S,D'Adamo MC,Franciolini F,Molinari P,Santorelli FM,Pessia M, Sci Rep. September 28, 2016; 6:2045-2322.
Katanin-like protein Katnal2 is required for ciliogenesis and brain development in Xenopus embryos., Willsey HR,Walentek P,Exner CRT,Xu Y,Xu Y,Lane AB,Harland RM,Heald R,Santama N, Dev Biol. January 1, 2018; 442(2):1095-564X.
HCN2 Rescues brain defects by enforcing endogenous voltage pre-patterns., Pai VP,Pietak A,Willocq V,Ye B,Shi NQ,Levin M, Nat Commun. January 1, 2018; 9(1):2041-1723.
NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models., Singh MD,Jensen M,Lasser M,Huber E,Yusuff T,Pizzo L,Lifschutz B,Desai I,Kubina A,Yennawar S,Kim S,Iyer J,Rincon-Limas DE,Lowery LA,Girirajan S, PLoS Genet. January 1, 2020; 16(2):1553-7404.
Opposite Modulation of RAC1 by Mutations in TRIO Is Associated with Distinct, Domain-Specific Neurodevelopmental Disorders., Barbosa S,Greville-Heygate S,Bonnet M,Godwin A,Fagotto-Kaufmann C,Kajava AV,Laouteouet D,Mawby R,Wai HA,Dingemans AJM,Hehir-Kwa J,Willems M,Capri Y,Mehta SG,Cox H,Goudie D,Vansenne F,Turnpenny P,Vincent M,Cogné B,Lesca G,Hertecant J,Rodriguez D,Keren B,Burglen L,Gérard M,Putoux A,Cantagrel V,Siquier-Pernet K,Rio M,Banka S,Sarkar A,Steeves M,Parker M,Clement E,Moutton S,Tran Mau-Them F,Piton A,de Vries BBA,Guille M,Debant A,Schmidt S,Baralle D, Am J Hum Genet. January 1, 2020; 106(3):1537-6605.
The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos., Willsey HR,Xu Y,Xu Y,Everitt A,Dea J,Exner CRT,Willsey AJ,State MW,Harland RM, Development. January 1, 2020; 147(21):1477-9129.
MiR-9 and the Midbrain-Hindbrain Boundary: A Showcase for the Limited Functional Conservation and Regulatory Complexity of MicroRNAs., Alwin Prem Anand A,Alvarez-Bolado G,Wizenmann A, Front Cell Dev Biol. January 1, 2020; 8:2296-634X.
Xenopus leads the way: Frogs as a pioneering model to understand the human brain., Exner CRT,Willsey HR, Genesis. January 1, 2021; 59(1-2):1526-968X.
Rab11fip5 regulates telencephalon development via ephrinB1 recycling., Yoon J,Garo J,Lee M,Sun J,Hwang YS,Daar IO, Development. January 1, 2021; 148(3):1477-9129.
Parallel in vivo analysis of large-effect autism genes implicates cortical neurogenesis and estrogen in risk and resilience., Willsey HR,Exner CRT,Xu Y,Xu Y,Everitt A,Sun N,Wang B,Dea J,Schmunk G,Zaltsman Y,Teerikorpi N,Kim A,Anderson AS,Shin D,Seyler M,Nowakowski TJ,Harland RM,Willsey AJ,State MW, Neuron. January 1, 2021; 109(5):0896-6273.
Early Developmental Exposure to Fluoxetine and Citalopram Results in Different Neurodevelopmental Outcomes., Liu K,Garcia A,Park JJ,Toliver AA,Ramos L,Aizenman CD, Neuroscience. January 1, 2021; 467:1873-7544.
Role of matrix metalloproteinase-9 in neurodevelopmental deficits and experience-dependent plasticity in Xenopus laevis., Gore SV,James EJ,Huang LC,Park JJ,Berghella A,Thompson AC,Cline HT,Aizenman CD, Elife. January 1, 2021; 10:2050-084X.
A convergent molecular network underlying autism and congenital heart disease., Rosenthal SB,Willsey HR,Xu Y,Xu Y,Mei Y,Dea J,Wang S,Curtis C,Sempou E,Khokha MK,Chi NC,Willsey AJ,Fisch KM,Ideker T, Cell Syst. January 1, 2021; 12(11):2405-4720.
A role for zinc transporter gene SLC39A12 in the nervous system and beyond., Davis DN,Strong MD,Chambers E,Hart MD,Bettaieb A,Clarke SL,Smith BJ,Stoecker BJ,Lucas EA,Lin D,Chowanadisai W, Gene. October 5, 2021; 799:1879-0038.
KCNK18 Biallelic Variants Associated with Intellectual Disability and Neurodevelopmental Disorders Alter TRESK Channel Activity., Pavinato L,Nematian-Ardestani E,Zonta A,De Rubeis S,Buxbaum J,Mancini C,Bruselles A,Tartaglia M,Pessia M,Tucker SJ,D'Adamo MC,Brusco A, Int J Mol Sci. June 4, 2021; 22(11):1422-0067.
Discovery of Dihydropyrrolo[1,2-a]pyrazin-3(4H)-one-Based Second-Generation GluN2C- and GluN2D-Selective Positive Allosteric Modulators (PAMs) of the N-Methyl-d-Aspartate (NMDA) Receptor., Epplin MP,Mohan A,Harris LD,Zhu Z,Strong KL,Bacsa J,Le P,Menaldino DS,Traynelis SF,Liotta DC, J Med Chem. January 1, 2020; 63(14):1520-4804.
Deep learning is widely applicable to phenotyping embryonic development and disease., Naert T,Çiçek Ö,Ogar P,Bürgi M,Shaidani NI,Kaminski MM,Xu Y,Xu Y,Grand K,Vujanovic M,Prata D,Hildebrandt F,Brox T,Ronneberger O,Voigt FF,Helmchen F,Loffing J,Horb ME,Willsey HR,Lienkamp SS, Development. January 1, 2021; 148(21):1477-9129.
Distinctive mechanisms of epilepsy-causing mutants discovered by measuring S4 movement in KCNQ2 channels., Edmond MA,Hinojo-Perez A,Wu X,Perez Rodriguez ME,Barro-Soria R, Elife. January 1, 2022; 11:2050-084X.