Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Literature (16)
Literature for DOID 0060388: chromosomal deletion syndrome

Xenbase Articles :
( Denotes literature images)
A dominant-negative form of the E3 ubiquitin ligase Cullin-1 disrupts the correct allocation of cell fate in the neural crest lineage., Voigt J,Papalopulu N, Development. February 1, 2006; 133(3):1477-9129.
XTbx1 is a transcriptional activator involved in head and pharyngeal arch development in Xenopus laevis., Ataliotis P,Ivins S,Mohun TJ,Scambler PJ, Dev Dyn. April 1, 2005; 232(4):1058-8388.
The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate., Li Y,Trojer P,Xu CF,Cheung P,Kuo A,Drury WJ,Qiao Q,Neubert TA,Xu RM,Gozani O,Reinberg D, J Biol Chem. December 4, 2009; 284(49):1083-351X.
Paraxial T-box genes, Tbx6 and Tbx1, are required for cranial chondrogenesis and myogenesis., Tazumi S,Yabe S,Uchiyama H, Dev Biol. October 15, 2010; 346(2):1095-564X.
Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis., Barnett C,Yazgan O,Kuo HC,Malakar S,Thomas T,Fitzgerald A,Harbour W,Henry JJ,Krebs JE, Mech Dev. September 1, 2012; 129(9-12):1872-6356.
MCTP2 is a dosage-sensitive gene required for cardiac outflow tract development., Lalani SR,Ware SM,Wang X,Zapata G,Tian Q,Franco LM,Jiang Z,Jiang Z,Bucasas K,Scott DA,Campeau PM,Hanchard N,Umaña L,Cast A,Patel A,Cheung SW,McBride KL,Bray M,Craig Chinault A,Boggs BA,Huang M,Baker MR,Hamilton S,Towbin J,Jefferies JL,Fernbach SD,Potocki L,Belmont JW, Hum Mol Genet. November 1, 2013; 22(21):1460-2083.
Retinoic acid induced-1 (Rai1) regulates craniofacial and brain development in Xenopus., Tahir R,Kennedy A,Elsea SH,Dickinson AJ, Mech Dev. August 1, 2014; 133:1872-6356.
Expression of ribosomopathy genes during Xenopus tropicalis embryogenesis., Robson A,Owens ND,Baserga SJ,Khokha MK,Griffin JN, BMC Dev Biol. January 1, 2016; 16(1):1471-213X.
Modeling human craniofacial disorders in Xenopus., Dubey A,Saint-Jeannet JP, Curr Pathobiol Rep. March 1, 2017; 5(1):2167-485X.
Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest Cells and Affect Craniofacial Development in Xenopus laevis., Mills A,Bearce E,Cella R,Kim SW,Selig M,Lee S,Lowery LA, Front Physiol. January 1, 2019; 10:1664-042X.
The Many Faces of Xenopus: Xenopus laevis as a Model System to Study Wolf-Hirschhorn Syndrome., Lasser M,Pratt B,Monahan C,Kim SW,Lowery LA, Front Physiol. January 1, 2019; 10:1664-042X.
NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models., Singh MD,Jensen M,Lasser M,Huber E,Yusuff T,Pizzo L,Lifschutz B,Desai I,Kubina A,Yennawar S,Kim S,Iyer J,Rincon-Limas DE,Lowery LA,Girirajan S, PLoS Genet. January 1, 2020; 16(2):1553-7404.
Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome., Alharatani R,Ververi A,Beleza-Meireles A,Ji W,Mis E,Patterson QT,Griffin JN,Bhujel N,Chang CA,Dixit A,Konstantino M,Healy C,Hannan S,Neo N,Cash A,Li D,Bhoj E,Zackai EH,Cleaver R,Baralle D,McEntagart M,Newbury-Ecob R,Scott R,Hurst JA,Au PYB,Hosey MT,Khokha M,Marciano DK,Lakhani SA,Liu KJ,Liu KJ, Hum Mol Genet. January 1, 2020; 29(11):1460-2083.
Role of epigenetics and miRNAs in orofacial clefts., Garland MA,Sun B,Zhang S,Reynolds K,Ji Y,Zhou CJ, Birth Defects Res. January 1, 2020; 112(19):2472-1727.
Modeling human congenital disorders with neural crest developmental defects using patient-derived induced pluripotent stem cells., Okuno H,Okano H, Regen Ther. December 1, 2021; 18:2352-3204.
Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly., Gur M,Bendelac-Kapon L,Shabtai Y,Pillemer G,Fainsod A, Front Cell Dev Biol. January 1, 2022; 10:2296-634X.