Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Literature (15)
Literature for DOID 10584: retinitis pigmentosa


Xenbase Articles :
( Denotes literature images)
ABCA4 mutations causing mislocalization are found frequently in patients with severe retinal dystrophies., Wiszniewski W,Zaremba CM,Yatsenko AN,Jamrich M,Wensel TG,Lewis RA,Lupski JR, Hum Mol Genet. October 1, 2005; 14(19):1460-2083.
Investigating the mechanisms of retinal degenerations with antisense oligonucleotides., Jablonski MM, Doc Ophthalmol. May 1, 2001; 102(3):0012-4486.
A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3)., Meindl A,Dry K,Herrmann K,Manson F,Ciccodicola A,Edgar A,Carvalho MR,Achatz H,Hellebrand H,Lennon A,Migliaccio C,Porter K,Zrenner E,Bird A,Jay M,Lorenz B,Wittwer B,D'Urso M,Meitinger T,Wright A, Nat Genet. May 1, 1996; 13(1):1546-1718.
Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin., Tam BM,Moritz OL, J Neurosci. August 22, 2007; 27(34):1529-2401.
Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light., Zhang R,Oglesby E,Marsh-Armstrong N, Exp Eye Res. April 1, 2008; 86(4):0014-4835.
A homozygous missense mutation in the IRBP gene (RBP3) associated with autosomal recessive retinitis pigmentosa., den Hollander AI,McGee TL,Ziviello C,Banfi S,Dryja TP,Gonzalez-Fernandez F,Ghosh D,Berson EL, Invest Ophthalmol Vis Sci. April 1, 2009; 50(4):1552-5783.
The severe autosomal dominant retinitis pigmentosa rhodopsin mutant Ter349Glu mislocalizes and induces rapid rod cell death., Hollingsworth TJ,Gross AK, J Biol Chem. October 4, 2013; 288(40):1083-351X.
Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa., Tam BM,Noorwez SM,Kaushal S,Kono M,Moritz OL, J Neurosci. October 1, 2014; 34(40):1529-2401.
Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic X. laevis Models of Retinitis Pigmentosa., Vent-Schmidt RYJ,Wen RH,Zong Z,Chiu CN,Tam BM,May CG,Moritz OL, J Neurosci. January 25, 2017; 37(4):1529-2401.
Modeling Dominant and Recessive Forms of Retinitis Pigmentosa by Editing Three Rhodopsin-Encoding Genes in Xenopus Laevis Using Crispr/Cas9., Feehan JM,Chiu CN,Stanar P,Tam BM,Ahmed SN,Moritz OL, Sci Rep. July 31, 2017; 7(1):2045-2322.
CRISPR/Cas9 disease models in zebrafish and Xenopus: The genetic renaissance of fish and frogs., Naert T,Vleminckx K,Vleminckx K, Drug Discov Today Technol. August 1, 2018; 28:1740-6749.
Disrupted ER membrane protein complex-mediated topogenesis drives congenital neural crest defects., Marquez J,Criscione J,Charney RM,Prasad MS,Hwang WY,Mis EK,García-Castro MI,Khokha MK, J Clin Invest. February 3, 2020; 130(2):1558-8238.
RPE Cells Engulf Microvesicles Secreted by Degenerating Rod Photoreceptors., Ropelewski P,Imanishi Y, eNeuro. May 21, 2020; 7(3):2373-2822.
FAM46B is a prokaryotic-like cytoplasmic poly(A) polymerase essential in human embryonic stem cells., Hu JL,Liang H,Zhang H,Yang MZ,Sun W,Zhang P,Luo L,Feng JX,Bai H,Liu F,Zhang T,Yang JY,Gao Q,Long Y,Ma XY,Chen Y,Chen Y,Zhong Q,Yu B,Liao S,Wang Y,Zhao Y,Zeng MS,Cao N,Wang J,Chen W,Yang HT,Gao S, Nucleic Acids Res. March 18, 2020; 48(5):1362-4962.
Structural bioinformatics predicts that the Retinitis Pigmentosa-28 protein of unknown function FAM161A is a homologue of the microtubule nucleation factor Tpx2., Levine TP, F1000Res. February 19, 2020; 9:2046-1402.