Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (172) GO Terms (1) Nucleotides (167) Proteins (47) Interactants (704) Wiki
XB--5891874

Papers associated with lgals4.2



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4

Sort Newest To Oldest Sort Oldest To Newest

A role for Xenopus Gli-type zinc finger proteins in the early embryonic patterning of mesoderm and neuroectoderm., Marine JC, Bellefroid EJ, Pendeville H, Martial JA, Pieler T., Mech Dev. May 1, 1997; 63 (2): 211-25.              


CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway., Zou Y, Evans S, Chen J, Kuo HC, Harvey RP, Chien KR., Development. February 1, 1997; 124 (4): 793-804.


Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning., Zhang J, King ML., Development. December 1, 1996; 122 (12): 4119-29.                  


Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm., Conlon FL, Sedgwick SG, Weston KM, Smith JC., Development. August 1, 1996; 122 (8): 2427-35.                    


Transposon tools for recombinant DNA manipulation: characterization of transcriptional regulators from yeast, Xenopus, and mouse., Morgan BA, Conlon FL, Manzanares M, Millar JB, Kanuga N, Sharpe J, Krumlauf R, Smith JC, Sedgwick SG., Proc Natl Acad Sci U S A. April 2, 1996; 93 (7): 2801-6.


Programming of a repressed but committed chromatin structure during early development., Prioleau MN, Buckle RS, Méchali M., EMBO J. October 16, 1995; 14 (20): 5073-84.


A naturally occurring short variant of the FTZ-F1-related nuclear orphan receptor xFF1rA and interactions between domains of xFF1rA., Ellinger-Ziegelbauer H, Gläser B, Dreyer C., Mol Endocrinol. July 1, 1995; 9 (7): 872-86.


Constraints on transcriptional activator function contribute to transcriptional quiescence during early Xenopus embryogenesis., Almouzni G, Wolffe AP., EMBO J. April 18, 1995; 14 (8): 1752-65.


Activation of Xenopus MyoD transcription by members of the MEF2 protein family., Wong MW, Pisegna M, Lu MF, Leibham D, Perry M., Dev Biol. December 1, 1994; 166 (2): 683-95.              


Repression of transcriptional activity at a distance by the evolutionarily conserved KRAB domain present in a subfamily of zinc finger proteins., Pengue G, Calabrò V, Bartoli PC, Pagliuca A, Lania L., Nucleic Acids Res. August 11, 1994; 22 (15): 2908-14.


Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex., Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR., Nature. August 11, 1994; 370 (6489): 477-81.


Transcriptional elongation by RNA polymerase II is stimulated by transactivators., Yankulov K, Blau J, Purton T, Roberts S, Bentley DL., Cell. June 3, 1994; 77 (5): 749-59.


Different potential of cellular and viral activators of transcription revealed in oocytes and early embryos of Xenopus laevis., Xu L, Rungger D, Georgiev O, Seipel K, Schaffner W., Biol Chem Hoppe Seyler. February 1, 1994; 375 (2): 105-12.


Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo., Almouzni G, Wolffe AP., Genes Dev. October 1, 1993; 7 (10): 2033-47.


Transcriptional activation by recombinant GAL4-VP16 in the Xenopus oocyte., Xu L, Schaffner W, Rungger D., Nucleic Acids Res. June 11, 1993; 21 (11): 2775.


Isolation and characterization of a cDNA encoding Drosophila transcription factor TFIIB., Yamashita S, Wada K, Horikoshi M, Gong DW, Kokubo T, Hisatake K, Yokotani N, Malik S, Roeder RG, Nakatani Y., Proc Natl Acad Sci U S A. April 1, 1992; 89 (7): 2839-43.


The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B., Schmitz ML, Baeuerle PA., EMBO J. December 1, 1991; 10 (12): 3805-17.


Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains., Taylor IC, Workman JL, Schuetz TJ, Kingston RE., Genes Dev. July 1, 1991; 5 (7): 1285-98.


Activation domains of stably bound GAL4 derivatives alleviate repression of promoters by nucleosomes., Workman JL, Taylor IC, Kingston RE., Cell. February 8, 1991; 64 (3): 533-44.


Complete assignment of the 1H NMR spectrum and secondary structure of the DNA binding domain of GAL4., Gadhavi PL, Raine AR, Alefounder PR, Laue ED., FEBS Lett. December 10, 1990; 276 (1-2): 49-53.


Metal ion co-ordination in the DNA binding domain of the yeast transcriptional activator GAL4., Povey JF, Diakun GP, Garner CD, Wilson SP, Laue ED., FEBS Lett. June 18, 1990; 266 (1-2): 142-6.


Sequence homology of the yeast regulatory protein ADR1 with Xenopus transcription factor TFIIIA., Hartshorne TA, Blumberg H, Young ET., Nature. March 20, 1986; 320 (6059): 283-7.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4