Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (317) GO Terms (11) Nucleotides (95) Proteins (63) Interactants (889) Wiki
XB--853971

Papers associated with cftr



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Time-dependent interactions of glibenclamide with CFTR: kinetically complex block of macroscopic currents., Zhang ZR, Cui G, Zeltwanger S, McCarty NA., J Membr Biol. October 1, 2004; 201 (3): 139-55.


Stimulation of Xenopus P2Y1 receptor activates CFTR in A6 cells., Guerra L, Favia M, Fanelli T, Calamita G, Svetlo M, Bagorda A, Jacobson KA, Reshkin SJ, Casavola V., Pflugers Arch. October 1, 2004; 449 (1): 66-75.


Involvement of G protein betagamma-subunits in diverse signaling induced by G(i/o)-coupled receptors: study using the Xenopus oocyte expression system., Uezono Y, Kaibara M, Murasaki O, Taniyama K., Am J Physiol Cell Physiol. October 1, 2004; 287 (4): C885-94.


Identification and characterization of evolutionarily conserved pufferfish, zebrafish, and frog orthologs of GASZ., Yan W, Ma L, Zilinski CA, Matzuk MM., Biol Reprod. June 1, 2004; 70 (6): 1619-25.  


Cystic fibrosis transmembrane conductance regulator differentially regulates human and mouse epithelial sodium channels in Xenopus oocytes., Yan W, Samaha FF, Ramkumar M, Kleyman TR, Rubenstein RC., J Biol Chem. May 28, 2004; 279 (22): 23183-92.


Dynamic control of cystic fibrosis transmembrane conductance regulator Cl(-)/HCO3(-) selectivity by external Cl(-)., Shcheynikov N, Kim KH, Kim KM, Dorwart MR, Ko SB, Goto H, Naruse S, Thomas PJ, Muallem S., J Biol Chem. May 21, 2004; 279 (21): 21857-65.


Control of epithelial ion transport by Cl- and PDZ proteins., Schreiber R, Boucherot A, Mürle B, Sun J, Kunzelmann K., J Membr Biol. May 15, 2004; 199 (2): 85-98.


Steady-state interactions of glibenclamide with CFTR: evidence for multiple sites in the pore., Zhang ZR, Zeltwanger S, McCarty NA., J Membr Biol. May 1, 2004; 199 (1): 15-28.


Assembly and trafficking of a multiprotein ROMK (Kir 1.1) channel complex by PDZ interactions., Yoo D, Flagg TP, Olsen O, Raghuram V, Foskett JK, Welling PA., J Biol Chem. February 20, 2004; 279 (8): 6863-73.


Cross talk of cAMP and flavone in regulation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel and Na+/K+/2Cl- cotransporter in renal epithelial A6 cells., Niisato N, Nishino H, Nishio K, Marunaka Y., Biochem Pharmacol. February 15, 2004; 67 (4): 795-801.


Imaging CFTR: a tail to tail dimer with a central pore., Schillers H, Shahin V, Albermann L, Schafer C, Oberleithner H., Cell Physiol Biochem. January 1, 2004; 14 (1-2): 1-10.


Protein kinase-independent activation of CFTR by phosphatidylinositol phosphates., Himmel B, Nagel G., EMBO Rep. January 1, 2004; 5 (1): 85-90.


Beta-adrenergic receptors couple to CFTR chloride channels of intercalated mitochondria-rich cells in the heterocellular toad skin epithelium., Larsen EH, Amstrup J, Willumsen NJ., Biochim Biophys Acta. December 30, 2003; 1618 (2): 140-52.


[Regulation of the drug-sensitivity of anion channels via phosphorylation]., Yamazaki J, Kitamura K., Nihon Yakurigaku Zasshi. November 1, 2003; 122 Suppl 67P-70P.


Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating., Basso C, Vergani P, Nairn AC, Gadsby DC., J Gen Physiol. September 1, 2003; 122 (3): 333-48.                


Inhibition of ATP-sensitive K+ channels by substituted benzo[c]quinolizinium CFTR activators., Prost A, Dérand R, Gros L, Becq F, Vivaudou M., Biochem Pharmacol. August 1, 2003; 66 (3): 425-30.


Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes., Chernova MN, Jiang L, Shmukler BE, Schweinfest CW, Blanco P, Freedman SD, Stewart AK, Alper SL., J Physiol. May 15, 2003; 549 (Pt 1): 3-19.


Synergistic effects of cystic fibrosis transmembrane conductance regulator and aquaporin-9 in the rat epididymis., Cheung KH, Leung CT, Leung GP, Wong PY., Biol Reprod. May 1, 2003; 68 (5): 1505-10.


Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells., Hallows KR, Kobinger GP, Wilson JM, Witters LA, Foskett JK., Am J Physiol Cell Physiol. May 1, 2003; 284 (5): C1297-308.


Effects of purinergic stimulation, CFTR and osmotic stress on amiloride-sensitive Na+ transport in epithelia and Xenopus oocytes., Schreiber R, König J, Sun J, Markovich D, Kunzelmann K., J Membr Biol. March 15, 2003; 192 (2): 101-10.


Release of ATP induced by hypertonic solutions in Xenopus oocytes., Aleu J, Martín-Satué M, Navarro P, Pérez de Lara I, Bahima L, Marsal J, Solsona C., J Physiol. February 15, 2003; 547 (Pt 1): 209-19.


P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport., Köttgen M, Löffler T, Jacobi C, Nitschke R, Pavenstädt H, Schreiber R, Frische S, Nielsen S, Leipziger J., J Clin Invest. February 1, 2003; 111 (3): 371-9.


The interaction between syntaxin 1A and cystic fibrosis transmembrane conductance regulator Cl- channels is mechanistically distinct from syntaxin 1A-SNARE interactions., Ganeshan R, Di A, Nelson DJ, Quick MW, Kirk KL., J Biol Chem. January 31, 2003; 278 (5): 2876-85.


Apparent affinity of CFTR for ATP is increased by continuous kinase activity., Szellas T, Nagel G., FEBS Lett. January 30, 2003; 535 (1-3): 141-6.


Regulation of channel gating by AMP-activated protein kinase modulates cystic fibrosis transmembrane conductance regulator activity in lung submucosal cells., Hallows KR, McCane JE, Kemp BE, Witters LA, Foskett JK., J Biol Chem. January 10, 2003; 278 (2): 998-1004.


cAMP-dependent activation of CFTR inhibits the epithelial sodium channel (ENaC) without affecting its surface expression., Konstas AA, Koch JP, Korbmacher C., Pflugers Arch. January 1, 2003; 445 (4): 513-21.


ENaC is inhibited by an increase in the intracellular Cl(-) concentration mediated through activation of Cl(-) channels., Kunzelmann K., Pflugers Arch. January 1, 2003; 445 (4): 504-12.


On the mechanism of MgATP-dependent gating of CFTR Cl- channels., Vergani P, Nairn AC, Gadsby DC., J Gen Physiol. January 1, 2003; 121 (1): 17-36.                          


Genistein improves regulatory interactions between G551D-cystic fibrosis transmembrane conductance regulator and the epithelial sodium channel in Xenopus oocytes., Suaud L, Carattino M, Kleyman TR, Rubenstein RC., J Biol Chem. December 27, 2002; 277 (52): 50341-7.


Structural basis for activation of G-protein-coupled receptors., Gether U, Asmar F, Meinild AK, Rasmussen SG., Pharmacol Toxicol. December 1, 2002; 91 (6): 304-12.


No evidence for inhibition of ENaC through CFTR-mediated release of ATP., König J, Schreiber R, Mall M, Kunzelmann K., Biochim Biophys Acta. September 20, 2002; 1565 (1): 17-28.                  


Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator., Zhang H, Peters KW, Sun F, Marino CR, Lang J, Burgoyne RD, Frizzell RA., J Biol Chem. August 9, 2002; 277 (32): 28948-58.                    


Cystic fibrosis transmembrane conductance regulator-dependent up-regulation of Kir1.1 (ROMK) renal K+ channels by the epithelial sodium channel., Konstas AA, Koch JP, Tucker SJ, Korbmacher C., J Biol Chem. July 12, 2002; 277 (28): 25377-84.


Genistein restores functional interactions between Delta F508-CFTR and ENaC in Xenopus oocytes., Suaud L, Li J, Jiang Q, Rubenstein RC, Kleyman TR., J Biol Chem. March 15, 2002; 277 (11): 8928-33.


Up-regulation of acid-gated Na(+) channels (ASICs) by cystic fibrosis transmembrane conductance regulator co-expression in Xenopus oocytes., Ji HL, Jovov B, Fu J, Bishop LR, Mebane HC, Fuller CM, Stanton BA, Benos DJ., J Biol Chem. March 8, 2002; 277 (10): 8395-405.


Adenine nucleotide-induced activation of adenosine A(2B) receptors expressed in Xenopus laevis oocytes: involvement of a rapid and localized adenosine formation by ectonucleotidases., Matsuoka I, Ohkubo S, Kimura J, Uezono Y., Mol Pharmacol. March 1, 2002; 61 (3): 606-13.


The severe G480C cystic fibrosis mutation, when replicated in the mouse, demonstrates mistrafficking, normal survival and organ-specific bioelectrics., Dickinson P, Smith SN, Webb S, Kilanowski FM, Campbell IJ, Taylor MS, Porteous DJ, Willemsen R, de Jonge HR, Farley R, Alton EW, Dorin JR., Hum Mol Genet. February 1, 2002; 11 (3): 243-51.


Quantitative analysis of ATP-dependent gating of CFTR., Powe A, Zhou Z, Hwang TC, Nagel G., Methods Mol Med. January 1, 2002; 70 67-98.


CFTR regulation of ENaC., Donaldson SH, Poligone EG, Stutts MJ., Methods Mol Med. January 1, 2002; 70 343-64.


Probing CFTR channel structure and function using the substituted-cysteine-accessibility method., Akabas MH., Methods Mol Med. January 1, 2002; 70 159-74.


Intracellular cysteines of the cystic fibrosis transmembrane conductance regulator (CFTR) modulate channel gating., Ketchum CJ, Yue H, Alessi KA, Devidas S, Guggino WB, Maloney PC., Cell Physiol Biochem. January 1, 2002; 12 (1): 1-8.


Voltage-sensitive gating induced by a mutation in the fifth transmembrane domain of CFTR., Zhang ZR, Zeltwanger S, Smith SS, Dawson DC, McCarty NA., Am J Physiol Lung Cell Mol Physiol. January 1, 2002; 282 (1): L135-45.


The cystic fibrosis transmembrane conductance regulator (CFTR) inhibits ENaC through an increase in the intracellular Cl- concentration., König J, Schreiber R, Voelcker T, Mall M, Kunzelmann K., EMBO Rep. November 1, 2001; 2 (11): 1047-51.


Role of CFTR's PDZ1-binding domain, NBF1 and Cl(-) conductance in inhibition of epithelial Na(+) channels in Xenopus oocytes., Boucherot A, Schreiber R, Kunzelmann K., Biochim Biophys Acta. November 1, 2001; 1515 (1): 64-71.


A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating., Fu J, Ji HL, Naren AP, Kirk KL., J Physiol. October 15, 2001; 536 (Pt 2): 459-70.


Different activation mechanisms of cystic fibrosis transmembrane conductance regulator expressed in Xenopus laevis oocytes., Webe WM, Segal A, Vankeerberghen A, Cassiman JJ, Van Driessche W., Comp Biochem Physiol A Mol Integr Physiol. October 1, 2001; 130 (3): 521-31.


CFTR: covalent modification of cysteine-substituted channels expressed in Xenopus oocytes shows that activation is due to the opening of channels resident in the plasma membrane., Liu X, Smith SS, Sun F, Dawson DC., J Gen Physiol. October 1, 2001; 118 (4): 433-46.                  


CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction., Smith SS, Liu X, Zhang ZR, Sun F, Kriewall TE, McCarty NA, Dawson DC., J Gen Physiol. October 1, 2001; 118 (4): 407-31.                                      


Identification of a region of strong discrimination in the pore of CFTR., McCarty NA, Zhang ZR., Am J Physiol Lung Cell Mol Physiol. October 1, 2001; 281 (4): L852-67.


Cysteine substitutions reveal dual functions of the amino-terminal tail in cystic fibrosis transmembrane conductance regulator channel gating., Fu J, Kirk KL., J Biol Chem. September 21, 2001; 276 (38): 35660-8.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???