Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (317) GO Terms (11) Nucleotides (95) Proteins (63) Interactants (889) Wiki
XB--853971

Papers associated with cftr



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Effects of 8-cpt-cAMP on the epithelial sodium channel expressed in Xenopus oocytes., Chraïbi A, Schnizler M, Clauss W, Horisberger JD., J Membr Biol. September 1, 2001; 183 (1): 15-23.


Regulation and properties of KCNQ1 (K(V)LQT1) and impact of the cystic fibrosis transmembrane conductance regulator., Boucherot A, Schreiber R, Kunzelmann K., J Membr Biol. July 1, 2001; 182 (1): 39-47.


Control of cystic fibrosis transmembrane conductance regulator expression by BAP31., Lambert G, Becker B, Schreiber R, Boucherot A, Reth M, Kunzelmann K., J Biol Chem. June 8, 2001; 276 (23): 20340-5.


Chromanol 293B, a blocker of the slow delayed rectifier K+ current (IKs), inhibits the CFTR Cl- current., Bachmann A, Quast U, Russ U., Naunyn Schmiedebergs Arch Pharmacol. June 1, 2001; 363 (6): 590-6.


PKC-mediated stimulation of amphibian CFTR depends on a single phosphorylation consensus site. insertion of this site confers PKC sensitivity to human CFTR., Button B, Reuss L, Altenberg GA., J Gen Physiol. May 1, 2001; 117 (5): 457-68.                    


Plasma membrane protein clusters appear in CFTR-expressing Xenopus laevis oocytes after cAMP stimulation., Schillers H, Danker T, Madeja M, Oberleithner H., J Membr Biol. April 1, 2001; 180 (3): 205-12.


Control of the cystic fibrosis transmembrane conductance regulator by alphaG(i) and RGS proteins., Schreiber R, Kindle P, Benzing T, Walz G, Kunzelmann K., Biochem Biophys Res Commun. March 9, 2001; 281 (4): 917-23.


Functional integrity of the vesicle transporting machinery is required for complete activation of cFTR expressed in xenopus laevis oocytes., Weber WM, Segal A, Simaels J, Vankeerberghen A, Cassiman JJ, Van Driessche W., Pflugers Arch. March 1, 2001; 441 (6): 850-9.


Non-specific activation of the epithelial sodium channel by the CFTR chloride channel., Nagel G, Szellas T, Riordan JR, Friedrich T, Hartung K., EMBO Rep. March 1, 2001; 2 (3): 249-54.


Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis., Wagner CA, Ott M, Klingel K, Beck S, Melzig J, Friedrich B, Wild KN, Bröer S, Moschen I, Albers A, Waldegger S, Tümmler B, Egan ME, Geibel JP, Kandolf R, Lang F., Cell Physiol Biochem. January 1, 2001; 11 (4): 209-18.


Anion permeation in Ca(2+)-activated Cl(-) channels., Qu Z, Hartzell HC., J Gen Physiol. December 1, 2000; 116 (6): 825-44.                          


Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A., Deken SL, Beckman ML, Boos L, Quick MW., Nat Neurosci. October 1, 2000; 3 (10): 998-1003.


Potent stimulation and inhibition of the CFTR Cl(-) current by phloxine B., Bachmann A, Russ U, Waldegger S, Quast U., Br J Pharmacol. October 1, 2000; 131 (3): 433-40.


E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells., Sun F, Hug MJ, Lewarchik CM, Yun CH, Bradbury NA, Frizzell RA., J Biol Chem. September 22, 2000; 275 (38): 29539-46.


The cytosolic termini of the beta- and gamma-ENaC subunits are involved in the functional interactions between cystic fibrosis transmembrane conductance regulator and epithelial sodium channel., Ji HL, Chalfant ML, Jovov B, Lockhart JP, Parker SB, Fuller CM, Stanton BA, Benos DJ., J Biol Chem. September 8, 2000; 275 (36): 27947-56.


Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains., Csanády L, Chan KW, Seto-Young D, Kopsco DC, Nairn AC, Gadsby DC., J Gen Physiol. September 1, 2000; 116 (3): 477-500.                          


Effect of genistein on native epithelial tissue from normal individuals and CF patients and on ion channels expressed in Xenopus oocytes., Mall M, Wissner A, Seydewitz HH, Hübner M, Kuehr J, Brandis M, Greger R, Kunzelmann K., Br J Pharmacol. August 1, 2000; 130 (8): 1884-92.


Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain., Chan KW, Csanády L, Seto-Young D, Nairn AC, Gadsby DC., J Gen Physiol. August 1, 2000; 116 (2): 163-80.                          


Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator., Zhang ZR, McDonough SI, McCarty NA., Biophys J. July 1, 2000; 79 (1): 298-313.


Aquaporin 3 cloned from Xenopus laevis is regulated by the cystic fibrosis transmembrane conductance regulator., Schreiber R, Pavenstädt H, Greger R, Kunzelmann K., FEBS Lett. June 23, 2000; 475 (3): 291-5.


Identification of the cystic fibrosis transmembrane conductance regulator domains that are important for interactions with ROMK2., Cahill P, Nason MW, Ambrose C, Yao TY, Thomas P, Egan ME., J Biol Chem. June 2, 2000; 275 (22): 16697-701.


Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase., Hallows KR, Raghuram V, Kemp BE, Witters LA, Foskett JK., J Clin Invest. June 1, 2000; 105 (12): 1711-21.


Suppressive interactions between mutations located in the two nucleotide binding domains of CFTR., Wei L, Vankeerberghen A, Jaspers M, Cassiman J, Nilius B, Cuppens H., FEBS Lett. May 12, 2000; 473 (2): 149-53.


Epithelial sodium channels regulate cystic fibrosis transmembrane conductance regulator chloride channels in Xenopus oocytes., Jiang Q, Li J, Dubroff R, Ahn YJ, Foskett JK, Engelhardt J, Kleyman TR., J Biol Chem. May 5, 2000; 275 (18): 13266-74.


Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes., Zhang ZR, Zeltwanger S, McCarty NA., J Membr Biol. May 1, 2000; 175 (1): 35-52.


Heterologous facilitation of G protein-activated K(+) channels by beta-adrenergic stimulation via cAMP-dependent protein kinase., Müllner C, Vorobiov D, Bera AK, Uezono Y, Yakubovich D, Frohnwieser-Steinecker B, Dascal N, Schreibmayer W., J Gen Physiol. May 1, 2000; 115 (5): 547-58.              


Syntaxin 1A is expressed in airway epithelial cells, where it modulates CFTR Cl(-) currents., Naren AP, Di A, Cormet-Boyaka E, Boyaka PN, McGhee JR, Zhou W, Akagawa K, Fujiwara T, Thome U, Engelhardt JF, Nelson DJ, Kirk KL., J Clin Invest. February 1, 2000; 105 (3): 377-86.


Cystic fibrosis transmembrane conductance regulator. Physical basis for lyotropic anion selectivity patterns., Smith SS, Steinle ED, Meyerhoff ME, Dawson DC., J Gen Physiol. December 1, 1999; 114 (6): 799-818.                


CFTR chloride channel regulation by an interdomain interaction., Naren AP, Cormet-Boyaka E, Fu J, Villain M, Blalock JE, Quick MW, Kirk KL., Science. October 15, 1999; 286 (5439): 544-8.


Potent inhibition of the CFTR chloride channel by suramin., Bachmann A, Russ U, Quast U., Naunyn Schmiedebergs Arch Pharmacol. October 1, 1999; 360 (4): 473-6.


Capacitance measurements reveal different pathways for the activation of CFTR., Weber WM, Cuppens H, Cassiman JJ, Clauss W, Van Driessche W., Pflugers Arch. September 1, 1999; 438 (4): 561-9.


Secretory apical Cl- channels in A6 cells: possible control by cell Ca2+ and cAMP., Atia F, Zeiske W, van Driessche W., Pflugers Arch. August 1, 1999; 438 (3): 344-53.


Syntaxin 1A inhibits regulated CFTR trafficking in xenopus oocytes., Peters KW, Qi J, Watkins SC, Frizzell RA., Am J Physiol. July 1, 1999; 277 (1): C174-80.


Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites., Weinreich F, Riordan JR, Nagel G., J Gen Physiol. July 1, 1999; 114 (1): 55-70.                        


Downregulation of epithelial sodium channel (ENaC) by CFTR co-expressed in Xenopus oocytes is independent of Cl- conductance., Chabot H, Vives MF, Dagenais A, Grygorczyk C, Berthiaume Y, Grygorczyk R., J Membr Biol. June 1, 1999; 169 (3): 175-88.


Cystic fibrosis transmembrane conductance regulator inhibits epithelial Na+ channels carrying Liddle's syndrome mutations., Hopf A, Schreiber R, Mall M, Greger R, Kunzelmann K., J Biol Chem. May 14, 1999; 274 (20): 13894-9.


Structural and ionic determinants of 5-nitro-2-(3-phenylprophyl-amino)-benzoic acid block of the CFTR chloride channel., Walsh KB, Long KJ, Shen X., Br J Pharmacol. May 1, 1999; 127 (2): 369-76.


The first-nucleotide binding domain of the cystic-fibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+ channel., Schreiber R, Hopf A, Mall M, Greger R, Kunzelmann K., Proc Natl Acad Sci U S A. April 27, 1999; 96 (9): 5310-5.


The cystic fibrosis transmembrane conductance regulator activates aquaporin 3 in airway epithelial cells., Schreiber R, Nitschke R, Greger R, Kunzelmann K., J Biol Chem. April 23, 1999; 274 (17): 11811-6.


Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C., Yamazaki J, Britton F, Collier ML, Horowitz B, Hume JR., Biophys J. April 1, 1999; 76 (4): 1972-87.


Melatonin receptor potentiation of cyclic AMP and the cystic fibrosis transmembrane conductance regulator ion channel., Nelson CS, Marino JL, Allen CN., J Pineal Res. March 1, 1999; 26 (2): 113-21.


Cloning, characterization, and functional expression of a CNP receptor regulating CFTR in the shark rectal gland., Aller SG, Lombardo ID, Bhanot S, Forrest JN., Am J Physiol. February 1, 1999; 276 (2): C442-9.


A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function., Pasyk EA, Morin XK, Zeman P, Garami E, Galley K, Huan LJ, Wang Y, Bear CE., J Biol Chem. November 27, 1998; 273 (48): 31759-64.


Phosphorylation site independent single R-domain mutations affect CFTR channel activity., Wei L, Vankeerberghen A, Cuppens H, Droogmans G, Cassiman JJ, Nilius B., FEBS Lett. November 13, 1998; 439 (1-2): 121-6.


The second half of the cystic fibrosis transmembrane conductance regulator forms a functional chloride channel., Devidas S, Yue H, Guggino WB., J Biol Chem. November 6, 1998; 273 (45): 29373-80.


Cystic fibrosis transmembrane conductance regulator-associated ATP release is controlled by a chloride sensor., Jiang Q, Mak D, Devidas S, Schwiebert EM, Bragin A, Zhang Y, Skach WR, Guggino WB, Foskett JK, Engelhardt JF., J Cell Biol. November 2, 1998; 143 (3): 645-57.              


Characterization of mutations located in exon 18 of the CFTR gene., Vankeerberghen A, Wei L, Teng H, Jaspers M, Cassiman JJ, Nilius B, Cuppens H., FEBS Lett. October 16, 1998; 437 (1-2): 1-4.


Characterization of 19 disease-associated missense mutations in the regulatory domain of the cystic fibrosis transmembrane conductance regulator., Vankeerberghen A, Wei L, Jaspers M, Cassiman JJ, Nilius B, Cuppens H., Hum Mol Genet. October 1, 1998; 7 (11): 1761-9.


Syntaxin 1A inhibits CFTR chloride channels by means of domain-specific protein-protein interactions., Naren AP, Quick MW, Collawn JF, Nelson DJ, Kirk KL., Proc Natl Acad Sci U S A. September 1, 1998; 95 (18): 10972-7.


Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator., Akabas MH., Biochemistry. September 1, 1998; 37 (35): 12233-40.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???