Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (317) GO Terms (11) Nucleotides (95) Proteins (63) Interactants (889) Wiki
XB--853971

Papers associated with cftr



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Novel subunit composition of a renal epithelial KATP channel., Ruknudin A, Schulze DH, Sullivan SK, Lederer WJ, Welling PA., J Biol Chem. June 5, 1998; 273 (23): 14165-71.


Cl- transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC., Briel M, Greger R, Kunzelmann K., J Physiol. May 1, 1998; 508 ( Pt 3) 825-36.


Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator., Schwiebert EM, Morales MM, Devidas S, Egan ME, Guggino WB., Proc Natl Acad Sci U S A. March 3, 1998; 95 (5): 2674-9.


A divergent CFTR homologue: highly regulated salt transport in the euryhaline teleost F. heteroclitus., Singer TD, Tucker SJ, Marshall WS, Higgins CF., Am J Physiol. March 1, 1998; 274 (3): C715-23.


Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore., Mansoura MK, Smith SS, Choi AD, Richards NW, Strong TV, Drumm ML, Collins FS, Dawson DC., Biophys J. March 1, 1998; 74 (3): 1320-32.


Vasoactive intestinal peptide, forskolin, and genistein increase apical CFTR trafficking in the rectal gland of the spiny dogfish, Squalus acanthias. Acute regulation of CFTR trafficking in an intact epithelium., Lehrich RW, Aller SG, Webster P, Marino CR, Forrest JN., J Clin Invest. February 15, 1998; 101 (4): 737-45.


Microtubule disruption inhibits AVT-stimulated Cl- secretion but not Na+ reabsorption in A6 cells., Morris RG, Tousson A, Benos DJ, Schafer JA., Am J Physiol. February 1, 1998; 274 (2): F300-14.


Microtubule disruption inhibits AVT-stimulated Cl - secretion but not Na + reabsorption in A6 cells., Morris RG, Tousson A, Benos DJ, Schafer JA., Am J Physiol Renal Physiol. February 1, 1998; 274 (2): F300-F314.


Function of the rat calcitonin receptors, C1a and C1b, expressed in Xenopus oocytes., Matsumoto M, Kaibara M, Uezono Y, Izumi F, Sumikawa K, Sexton PM, Taniyama K., Biochem Biophys Res Commun. January 26, 1998; 242 (3): 484-91.


No evidence for direct activation of the cystic fibrosis transmembrane conductance regulator by 8-cyclopentyl-1,3-dipropylxanthine., Kunzelmann K, Briel M, Schreiber R, Ricken S, Nitschke R, Greger R., Cell Physiol Biochem. January 1, 1998; 8 (4): 185-93.


Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes., Chraïbi A, Vallet V, Firsov D, Hess SK, Horisberger JD., J Gen Physiol. January 1, 1998; 111 (1): 127-38.              


Enhancement by baclofen of the Gs-coupled receptor-mediated cAMP production in Xenopus oocytes expressing rat brain cortex poly (A)+ RNA: a role of G-protein beta gamma subunits., Uezono Y, Ueda Y, Ueno S, Shibuya I, Yanagihara N, Toyohira Y, Yamashita H, Izumi F., Biochem Biophys Res Commun. December 18, 1997; 241 (2): 476-80.


The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl- conductance of Xenopus oocytes., Kunzelmann K, Mall M, Briel M, Hipper A, Nitschke R, Ricken S, Greger R., Pflugers Arch. December 1, 1997; 435 (1): 178-81.


FLAG epitope positioned in an external loop preserves normal biophysical properties of CFTR., Schultz BD, Takahashi A, Liu C, Frizzell RA, Howard M., Am J Physiol. December 1, 1997; 273 (6): C2080-9.


Regulation of CFTR chloride channels by syntaxin and Munc18 isoforms., Naren AP, Nelson DJ, Xie W, Jovov B, Pevsner J, Bennett MK, Benos DJ, Quick MW, Kirk KL., Nature. November 20, 1997; 390 (6657): 302-5.


A functional CFTR-NBF1 is required for ROMK2-CFTR interaction., McNicholas CM, Nason MW, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME., Am J Physiol. November 1, 1997; 273 (5): F843-8.


Cystic fibrosis transmembrane conductance regulator activates water conductance in Xenopus oocytes., Schreiber R, Greger R, Nitschke R, Kunzelmann K., Pflugers Arch. November 1, 1997; 434 (6): 841-7.


Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator., Xiong X, Bragin A, Widdicombe JH, Cohn J, Skach WR., J Clin Invest. September 1, 1997; 100 (5): 1079-88.


KVLQT channels are inhibited by the K+ channel blocker 293B., Bleich M, Briel M, Busch AE, Lang HJ, Gerlach U, Gögelein H, Greger R, Kunzelmann K., Pflugers Arch. August 1, 1997; 434 (4): 499-501.


Direct action of genistein on CFTR., Weinreich F, Wood PG, Riordan JR, Nagel G., Pflugers Arch. August 1, 1997; 434 (4): 484-91.


CFTR activation: additive effects of stimulatory and inhibitory phosphorylation sites in the R domain., Wilkinson DJ, Strong TV, Mansoura MK, Wood DL, Smith SS, Collins FS, Dawson DC., Am J Physiol. July 1, 1997; 273 (1 Pt 1): L127-33.


mu-opioid receptor regulates CFTR coexpressed in Xenopus oocytes in a cAMP independent manner., Wotta DR, Birnbaum AK, Wilcox GL, Elde R, Law PY., Brain Res Mol Brain Res. February 1, 1997; 44 (1): 55-65.


Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator., Kunzelmann K, Kiser GL, Schreiber R, Riordan JR., FEBS Lett. January 6, 1997; 400 (3): 341-4.


Expression of the cystic fibrosis phenotype in a renal amphibian epithelial cell line., Ling BN, Zuckerman JB, Lin C, Harte BJ, McNulty KA, Smith PR, Gomez LM, Worrell RT, Eaton DC, Kleyman TR., J Biol Chem. January 3, 1997; 272 (1): 594-600.


CFTR-dependent membrane insertion is linked to stimulation of the CFTR chloride conductance., Takahashi A, Watkins SC, Howard M, Frizzell RA., Am J Physiol. December 1, 1996; 271 (6 Pt 1): C1887-94.


Function of Xenopus cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels and use of human-Xenopus chimeras to investigate the pore properties of CFTR., Price MP, Ishihara H, Sheppard DN, Welsh MJ., J Biol Chem. October 11, 1996; 271 (41): 25184-91.


Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator., McNicholas CM, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME., Proc Natl Acad Sci U S A. July 23, 1996; 93 (15): 8083-8.


cAMP stimulation of CFTR-expressing Xenopus oocytes activates a chromanol-inhibitable K+ conductance., Mall M, Kunzelmann K, Hipper A, Busch AE, Greger R., Pflugers Arch. July 1, 1996; 432 (3): 516-22.


Regulation of the CFTR chloride channel from humans and sharks., Hanrahan JW, Mathews CJ, Grygorczyk R, Tabcharani JA, Grzelczak Z, Chang XB, Riordan JR., J Exp Zool. July 1, 1996; 275 (4): 283-91.


Cystic fibrosis gene encodes a cAMP-dependent chloride channel in heart., Hart P, Warth JD, Levesque PC, Collier ML, Geary Y, Horowitz B, Hume JR., Proc Natl Acad Sci U S A. June 25, 1996; 93 (13): 6343-8.


Chloride channels: a molecular perspective., Jentsch TJ., Curr Opin Neurobiol. June 1, 1996; 6 (3): 303-10.


Review article: new insights into the mechanisms of hepatic transport and bile secretion., Erlinger S., J Gastroenterol Hepatol. June 1, 1996; 11 (6): 575-9.


Both the wild type and a functional isoform of CFTR are expressed in kidney., Morales MM, Carroll TP, Morita T, Schwiebert EM, Devuyst O, Wilson PD, Lopes AG, Stanton BA, Dietz HC, Cutting GR, Guggino WB., Am J Physiol. June 1, 1996; 270 (6 Pt 2): F1038-48.


cAMP-regulated trafficking of epitope-tagged CFTR., Howard M, Jilling T, DuVall M, Frizzell RA., Kidney Int. June 1, 1996; 49 (6): 1642-8.


Molecular cloning and expression of a cyclic AMP-activated chloride conductance regulator: a novel ATP-binding cassette transporter., van Kuijck MA, van Aubel RA, Busch AE, Lang F, Russel FG, Bindels RJ, van Os CH, Deen PM., Proc Natl Acad Sci U S A. May 28, 1996; 93 (11): 5401-6.


Identification of a protein that confers calcitonin gene-related peptide responsiveness to oocytes by using a cystic fibrosis transmembrane conductance regulator assay., Luebke AE, Dahl GP, Roos BA, Dickerson IM., Proc Natl Acad Sci U S A. April 16, 1996; 93 (8): 3455-60.


Wild type but not deltaF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes., Mall M, Hipper A, Greger R, Kunzelmann K., FEBS Lett. February 26, 1996; 381 (1-2): 47-52.


N-Acetyl-L-cysteine and its derivatives activate a Cl- conductance in epithelial cells., Köttgen M, Busch AE, Hug MJ, Greger R, Kunzelmann K., Pflugers Arch. February 1, 1996; 431 (4): 549-55.


Mechanisms of hepatic transport and bile secretion., Erlinger S., Acta Gastroenterol Belg. January 1, 1996; 59 (2): 159-62.


CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state., Wilkinson DJ, Mansoura MK, Watson PY, Smit LS, Collins FS, Dawson DC., J Gen Physiol. January 1, 1996; 107 (1): 103-19.


Epitope tagging permits cell surface detection of functional CFTR., Howard M, DuVall MD, Devor DC, Dong JY, Henze K, Frizzell RA., Am J Physiol. December 1, 1995; 269 (6 Pt 1): C1565-76.


Mutations in the putative pore-forming domain of CFTR do not change anion selectivity of the cAMP activated Cl- conductance., Hipper A, Mall M, Greger R, Kunzelmann K., FEBS Lett. November 6, 1995; 374 (3): 312-6.


Identification and partial characterization of a domain in CFTR that may bind cyclic nucleotides directly., Sullivan SK, Agellon LB, Schick R., Curr Biol. October 1, 1995; 5 (10): 1159-67.


Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents., Fulmer SB, Schwiebert EM, Morales MM, Guggino WB, Cutting GR., Proc Natl Acad Sci U S A. July 18, 1995; 92 (15): 6832-6.


Alternate translation initiation codons can create functional forms of cystic fibrosis transmembrane conductance regulator., Carroll TP, Morales MM, Fulmer SB, Allen SS, Flotte TR, Cutting GR, Guggino WB., J Biol Chem. May 19, 1995; 270 (20): 11941-6.


Detection of adenylate cyclase-coupled receptors in Xenopus oocytes by coexpression with cystic fibrosis transmembrane conductance regulator., Grygorczyk R, Abramovitz M, Boie Y, Bastien L, Adam M., Anal Biochem. May 1, 1995; 227 (1): 27-31.


Missense mutation (G480C) in the CFTR gene associated with protein mislocalization but normal chloride channel activity., Smit LS, Strong TV, Wilkinson DJ, Macek M, Mansoura MK, Wood DL, Cole JL, Cutting GR, Cohn JA, Dawson DC., Hum Mol Genet. February 1, 1995; 4 (2): 269-73.


Functional expression of adrenergic and opioid receptors in Xenopus oocytes: interaction between alpha 2- and beta 2-adrenergic receptors., Birnbaum AK, Wotta DR, Law PY, Wilcox GL., Brain Res Mol Brain Res. January 1, 1995; 28 (1): 72-80.


Mobilization of intracellular Ca2+ and stimulation of cyclic AMP production by kappa opioid receptors expressed in Xenopus oocytes., Kaneko S, Nakamura S, Adachi K, Akaike A, Satoh M., Brain Res Mol Brain Res. December 1, 1994; 27 (2): 258-64.


Coupled secretion of chloride and mucus in skin of Xenopus laevis: possible role for CFTR., Engelhardt JF, Smith SS, Allen E, Yankaskas JR, Dawson DC, Wilson JM., Am J Physiol. August 1, 1994; 267 (2 Pt 1): C491-500.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???