Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (317) GO Terms (11) Nucleotides (95) Proteins (63) Interactants (889) Wiki
XB--853971

Papers associated with cftr



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Conformational changes in the catalytically inactive nucleotide-binding site of CFTR., Csanády L, Mihályi C, Szollosi A, Töröcsik B, Vergani P., J Gen Physiol. July 1, 2013; 142 (1): 61-73.                  


Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity., Londino JD, Lazrak A, Jurkuvenaite A, Collawn JF, Noah JW, Matalon S., Am J Physiol Lung Cell Mol Physiol. May 1, 2013; 304 (9): L582-92.


Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules., Woodward OM, Tukaye DN, Cui J, Greenwell P, Constantoulakis LM, Parker BS, Rao A, Köttgen M, Maloney PC, Guggino WB., Proc Natl Acad Sci U S A. March 26, 2013; 110 (13): 5223-8.


Human trace amine-associated receptor TAAR5 can be activated by trimethylamine., Wallrabenstein I, Kuklan J, Weber L, Zborala S, Werner M, Altmüller J, Becker C, Schmidt A, Hatt H, Hummel T, Gisselmann G., PLoS One. January 1, 2013; 8 (2): e54950.          


Cystic fibrosis transmembrane conductance regulator-mRNA delivery: a novel alternative for cystic fibrosis gene therapy., Bangel-Ruland N, Tomczak K, Fernández Fernández E, Leier G, Leciejewski B, Rudolph C, Rosenecker J, Weber WM., J Gene Med. January 1, 2013; 15 (11-12): 414-26.


A characterization of the Manduca sexta serotonin receptors in the context of olfactory neuromodulation., Dacks AM, Reale V, Pi Y, Zhang W, Dacks JB, Nighorn AJ, Evans PD., PLoS One. January 1, 2013; 8 (7): e69422.          


Locating a plausible binding site for an open-channel blocker, GlyH-101, in the pore of the cystic fibrosis transmembrane conductance regulator., Norimatsu Y, Ivetac A, Alexander C, O'Donnell N, Frye L, Sansom MS, Dawson DC., Mol Pharmacol. December 1, 2012; 82 (6): 1042-55.


Nedd4-2 does not regulate wt-CFTR in human airway epithelial cells., Koeppen K, Chapline C, Sato JD, Stanton BA., Am J Physiol Lung Cell Mol Physiol. October 15, 2012; 303 (8): L720-7.


A universally conserved residue in the SUR1 subunit of the KATP channel is essential for translating nucleotide binding at SUR1 into channel opening., de Wet H, Shimomura K, Aittoniemi J, Ahmad N, Lafond M, Sansom MS, Ashcroft FM., J Physiol. October 15, 2012; 590 (20): 5025-36.            


Regional differences in rat conjunctival ion transport activities., Yu D, Thelin WR, Rogers TD, Stutts MJ, Randell SH, Grubb BR, Boucher RC., Am J Physiol Cell Physiol. October 1, 2012; 303 (7): C767-80.


Role of binding and nucleoside diphosphate kinase A in the regulation of the cystic fibrosis transmembrane conductance regulator by AMP-activated protein kinase., King JD, Lee J, Riemen CE, Neumann D, Xiong S, Foskett JK, Mehta A, Muimo R, Hallows KR., J Biol Chem. September 28, 2012; 287 (40): 33389-400.              


Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP(4))., Norimatsu Y, Moran AR, MacDonald KD., Biochem Biophys Res Commun. September 28, 2012; 426 (3): 374-9.


Thermal instability of ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) channel function: protection by single suppressor mutations and inhibiting channel activity., Liu X, O'Donnell N, Landstrom A, Skach WR, Dawson DC., Biochemistry. June 26, 2012; 51 (25): 5113-24.


Regulation of ENaC biogenesis by the stress response protein SERP1., Faria D, Lentze N, Almaça J, Luz S, Alessio L, Tian Y, Martins JP, Cruz P, Schreiber R, Rezwan M, Farinha CM, Auerbach D, Amaral MD, Kunzelmann K., Pflugers Arch. June 1, 2012; 463 (6): 819-27.


The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation., Rode B, Dirami T, Bakouh N, Rizk-Rabin M, Norez C, Lhuillier P, Lorès P, Jollivet M, Melin P, Zvetkova I, Bienvenu T, Becq F, Planelles G, Edelman A, Gacon G, Touré A., Hum Mol Genet. March 15, 2012; 21 (6): 1287-98.


Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers., Cui G, Song B, Turki HW, McCarty NA., Pflugers Arch. March 1, 2012; 463 (3): 405-18.


Divergent CFTR orthologs respond differently to the channel inhibitors CFTRinh-172, glibenclamide, and GlyH-101., Stahl M, Stahl K, Brubacher MB, Forrest JN., Am J Physiol Cell Physiol. January 1, 2012; 302 (1): C67-76.


Functional interaction between CFTR and the sodium-phosphate co-transport type 2a in Xenopus laevis oocytes., Bakouh N, Chérif-Zahar B, Hulin P, Prié D, Friedlander G, Edelman A, Planelles G., PLoS One. January 1, 2012; 7 (4): e34879.                


Sildenafil acts as potentiator and corrector of CFTR but might be not suitable for the treatment of CF lung disease., Leier G, Bangel-Ruland N, Sobczak K, Knieper Y, Weber WM., Cell Physiol Biochem. January 1, 2012; 29 (5-6): 775-90.


Cystic fibrosis transmembrane conductance regulator: temperature-dependent cysteine reactivity suggests different stable conformers of the conduction pathway., Liu X, Dawson DC., Biochemistry. November 29, 2011; 50 (47): 10311-7.


Contribution of casein kinase 2 and spleen tyrosine kinase to CFTR trafficking and protein kinase A-induced activity., Luz S, Kongsuphol P, Mendes AI, Romeiras F, Sousa M, Schreiber R, Matos P, Jordan P, Mehta A, Amaral MD, Kunzelmann K, Farinha CM., Mol Cell Biol. November 1, 2011; 31 (22): 4392-404.


F508del-CFTR increases intracellular Ca(2+) signaling that causes enhanced calcium-dependent Cl(-) conductance in cystic fibrosis., Martins JR, Kongsuphol P, Sammels E, Dahimène S, Aldehni F, Clarke LA, Schreiber R, de Smedt H, Amaral MD, Kunzelmann K., Biochim Biophys Acta. November 1, 2011; 1812 (11): 1385-92.


Enhancement of alveolar epithelial sodium channel activity with decreased cystic fibrosis transmembrane conductance regulator expression in mouse lung., Lazrak A, Jurkuvenaite A, Chen L, Keeling KM, Collawn JF, Bedwell DM, Matalon S., Am J Physiol Lung Cell Mol Physiol. October 1, 2011; 301 (4): L557-67.


CFTR induces extracellular acid sensing in Xenopus oocytes which activates endogenous Ca²⁺-activated Cl⁻ conductance., Kongsuphol P, Schreiber R, Kraidith K, Kunzelmann K., Pflugers Arch. September 1, 2011; 462 (3): 479-87.


SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization., Stewart AK, Shmukler BE, Vandorpe DH, Reimold F, Heneghan JF, Nakakuki M, Akhavein A, Ko S, Ishiguro H, Alper SL., Am J Physiol Cell Physiol. August 1, 2011; 301 (2): C289-303.


ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells., Suaud L, Miller K, Alvey L, Yan W, Robay A, Kebler C, Kreindler JL, Guttentag S, Hubbard MJ, Rubenstein RC., J Biol Chem. June 17, 2011; 286 (24): 21239-53.


Characterization of the L683P mutation of SLC26A9 in Xenopus oocytes., Avella M, Borgese F, Ehrenfeld J., Biochim Biophys Acta. June 1, 2011; 1810 (6): 577-83.


Mutant cycles at CFTR's non-canonical ATP-binding site support little interface separation during gating., Szollosi A, Muallem DR, Csanády L, Vergani P., J Gen Physiol. June 1, 2011; 137 (6): 549-62.                  


The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility., Abaffy T, Defazio AR., BMC Res Notes. May 6, 2011; 4 137.        


Native and recombinant Slc26a3 (downregulated in adenoma, Dra) do not exhibit properties of 2Cl-/1HCO3- exchange., Alper SL, Stewart AK, Vandorpe DH, Clark JS, Horack RZ, Simpson JE, Walker NM, Clarke LL., Am J Physiol Cell Physiol. February 1, 2011; 300 (2): C276-86.


SLC26A9 stimulates CFTR expression and function in human bronchial cell lines., Avella M, Loriol C, Boulukos K, Borgese F, Ehrenfeld J., J Cell Physiol. January 1, 2011; 226 (1): 212-23.


Effect of Annexin A5 on CFTR: regulated traffic or scaffolding?, Faria D, Dahimène S, Alessio L, Scott-Ward T, Schreiber R, Kunzelmann K, Amaral MD., Mol Membr Biol. January 1, 2011; 28 (1): 14-29.


Introduction to section V: assessment of CFTR function., Kunzelmann K., Methods Mol Biol. January 1, 2011; 741 407-18.


Electrophysiological, biochemical, and bioinformatic methods for studying CFTR channel gating and its regulation., Csanády L, Vergani P, Gulyás-Kovács A, Gadsby DC., Methods Mol Biol. January 1, 2011; 741 443-69.


CFTR regulation of epithelial sodium channel., Qadri YJ, Cormet-Boyaka E, Benos DJ, Berdiev BK., Methods Mol Biol. January 1, 2011; 742 35-50.


Involvement of F1296 and N1303 of CFTR in induced-fit conformational change in response to ATP binding at NBD2., Szollosi A, Vergani P, Csanády L., J Gen Physiol. October 1, 2010; 136 (4): 407-23.                


Stimulating effect of external Myo-inositol on the expression of mutant forms of aquaporin 2., Lussier Y, Bissonnette P, Bichet DG, Lapointe JY., J Membr Biol. July 1, 2010; 236 (2): 225-32.


A mutation of the epithelial sodium channel associated with atypical cystic fibrosis increases channel open probability and reduces Na+ self inhibition., Rauh R, Diakov A, Tzschoppe A, Korbmacher J, Azad AK, Cuppens H, Cassiman JJ, Dötsch J, Sticht H, Korbmacher C., J Physiol. April 15, 2010; 588 (Pt 8): 1211-25.


Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct., Lu M, Dong K, Egan ME, Giebisch GH, Boulpaep EL, Hebert SC., Proc Natl Acad Sci U S A. March 30, 2010; 107 (13): 6082-7.


Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations., Csanády L, Vergani P, Gadsby DC., Proc Natl Acad Sci U S A. January 19, 2010; 107 (3): 1241-6.


Functional characterization of a partial loss-of-function mutation of the epithelial sodium channel (ENaC) associated with atypical cystic fibrosis., Huber R, Krueger B, Diakov A, Korbmacher J, Haerteis S, Einsiedel J, Gmeiner P, Azad AK, Cuppens H, Cassiman JJ, Korbmacher C, Rauh R., Cell Physiol Biochem. January 1, 2010; 25 (1): 145-58.


Metformin treatment of diabetes mellitus increases the risk for pancreatitis in patients bearing the CFTR-mutation S573C., Kongsuphol P, Cassidy D, Romeiras F, Schreiber R, Mehta A, Kunzelmann K., Cell Physiol Biochem. January 1, 2010; 25 (4-5): 389-96.


PIKfyve upregulates CFTR activity., Gehring EM, Lam RS, Siraskar G, Koutsouki E, Seebohm G, Ureche ON, Ureche L, Baltaev R, Tavare JM, Lang F., Biochem Biophys Res Commun. December 18, 2009; 390 (3): 952-7.


Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore., Alexander C, Ivetac A, Liu X, Norimatsu Y, Serrano JR, Landstrom A, Sansom M, Dawson DC., Biochemistry. October 27, 2009; 48 (42): 10078-88.                


Slc26a9 is inhibited by the R-region of the cystic fibrosis transmembrane conductance regulator via the STAS domain., Chang MH, Plata C, Sindic A, Ranatunga WK, Chen AP, Zandi-Nejad K, Chan KW, Thompson J, Mount DB, Romero MF., J Biol Chem. October 9, 2009; 284 (41): 28306-18.


AMP-activated protein kinase phosphorylation of the R domain inhibits PKA stimulation of CFTR., King JD, Fitch AC, Lee JK, McCane JE, Mak DO, Foskett JK, Hallows KR., Am J Physiol Cell Physiol. July 1, 2009; 297 (1): C94-101.


Mutations in the amiloride-sensitive epithelial sodium channel in patients with cystic fibrosis-like disease., Azad AK, Rauh R, Vermeulen F, Jaspers M, Korbmacher J, Boissier B, Bassinet L, Fichou Y, des Georges M, Stanke F, De Boeck K, Dupont L, Balascáková M, Hjelte L, Lebecque P, Radojkovic D, Castellani C, Schwartz M, Stuhrmann M, Schwarz M, Skalicka V, de Monestrol I, Girodon E, Férec C, Claustres M, Tümmler B, Cassiman JJ, Korbmacher C, Cuppens H., Hum Mutat. July 1, 2009; 30 (7): 1093-103.


CFTR is activated through stimulation of purinergic P2Y2 receptors., Faria D, Schreiber R, Kunzelmann K., Pflugers Arch. April 1, 2009; 457 (6): 1373-80.


Inhibition of protein kinase CK2 closes the CFTR Cl channel, but has no effect on the cystic fibrosis mutant deltaF508-CFTR., Treharne KJ, Xu Z, Chen JH, Best OG, Cassidy DM, Gruenert DC, Hegyi P, Gray MA, Sheppard DN, Kunzelmann K, Mehta A., Cell Physiol Biochem. January 1, 2009; 24 (5-6): 347-60.


Regulation of CFTR trafficking by its R domain., Lewarchik CM, Peters KW, Qi J, Frizzell RA., J Biol Chem. October 17, 2008; 283 (42): 28401-12.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???