Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (134) GO Terms (8) Nucleotides (127) Proteins (56) Interactants (157) Wiki
XB--923159

Papers associated with ache



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Two novel mutations in the COLQ gene cause endplate acetylcholinesterase deficiency., Ishigaki K, Nicolle D, Krejci E, Leroy JP, Koenig J, Fardeau M, Eymard B, Hantaï D., Neuromuscul Disord. March 1, 2003; 13 (3): 236-44.


Molecular characterization of an acetylcholinesterase implicated in the regulation of glucose scavenging by the parasite Schistosoma., Jones AK, Bentley GN, Oliveros Parra WG, Agnew A., FASEB J. March 1, 2002; 16 (3): 441-3.


PRiMA: the membrane anchor of acetylcholinesterase in the brain., Perrier AL, Massoulié J, Krejci E., Neuron. January 17, 2002; 33 (2): 275-85.


Expression of the P2Y1 nucleotide receptor in chick muscle: its functional role in the regulation of acetylcholinesterase and acetylcholine receptor., Choi RC, Man ML, Ling KK, Ip NY, Simon J, Barnard EA, Tsim KW., J Neurosci. December 1, 2001; 21 (23): 9224-34.  


Effects of bis(7)-tacrine on spontaneous synaptic activity and on the nicotinic ACh receptor of Torpedo electric organ., Ros E, Aleu J, Gomez de Aranda I, Cantí C, Pang YP, Marsal J, Solsona C., J Neurophysiol. July 1, 2001; 86 (1): 183-9.


The pharmacology of novel acetylcholinesterase inhibitors, (+/-)-huprines Y and X, on the Torpedo electric organ., Ros E, Aleu J, Gómez de Aranda I, Muñoz-Torrero D, Camps P, Badia A, Marsal J, Solsona C., Eur J Pharmacol. June 8, 2001; 421 (2): 77-84.


Competitive potentiation of acetylcholine effects on neuronal nicotinic receptors by acetylcholinesterase-inhibiting drugs., Zwart R, van Kleef RG, Gotti C, Smulders CJ, Vijverberg HP., J Neurochem. December 1, 2000; 75 (6): 2492-500.


Patterns of calretinin, calbindin, and tyrosine-hydroxylase expression are consistent with the prosomeric map of the frog diencephalon., Milán FJ, Puelles L., J Comp Neurol. March 27, 2000; 419 (1): 96-121.                  


Differences in expression of acetylcholinesterase and collagen Q control the distribution and oligomerization of the collagen-tailed forms in fast and slow muscles., Krejci E, Legay C, Thomine S, Sketelj J, Massoulié J., J Neurosci. December 15, 1999; 19 (24): 10672-9.


Role of acetylcholinesterase in the development of axon tracts within the embryonic vertebrate brain., Anderson RB, Key B., Int J Dev Neurosci. December 1, 1999; 17 (8): 787-93.


Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development., Woldeyesus MT, Britsch S, Riethmacher D, Xu L, Sonnenberg-Riethmacher E, Abou-Rebyeh F, Harvey R, Caroni P, Birchmeier C., Genes Dev. October 1, 1999; 13 (19): 2538-48.


The binding sites of inhibitory monoclonal antibodies on acetylcholinesterase. Identification of a novel regulatory site at the putative "back door"., Simon S, Le Goff A, Frobert Y, Grassi J, Massoulié J., J Biol Chem. September 24, 1999; 274 (39): 27740-6.


Acetylcholinesterase clustering at the neuromuscular junction involves perlecan and dystroglycan., Peng HB, Xie H, Rossi SG, Rotundo RL., J Cell Biol. May 17, 1999; 145 (4): 911-21.                  


Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study., Titmus MJ, Tsai HJ, Lima R, Udin SB., Neuroscience. January 1, 1999; 91 (2): 753-69.


In vivo and in vitro resistance to multiple anticholinesterases in Xenopus laevis tadpoles., Shapira M, Seidman S, Livni N, Soreq H., Toxicol Lett. December 28, 1998; 102-103 205-9.


A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway., Simon S, Krejci E, Massoulié J., EMBO J. November 2, 1998; 17 (21): 6178-87.


Perisynaptic Schwann cells at neuromuscular junctions revealed by a novel monoclonal antibody., Astrow SH, Qiang H, Ko CP., J Neurocytol. September 1, 1998; 27 (9): 667-81.


Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini., Sternfeld M, Ming G, Song H, Sela K, Timberg R, Poo M, Soreq H., J Neurosci. February 15, 1998; 18 (4): 1240-9.


Position effect variegations and brain-specific silencing in transgenic mice overexpressing human acetylcholinesterase variants., Sternfeld M, Patrick JD, Soreq H., J Physiol Paris. January 1, 1998; 92 (3-4): 249-55.


Forebrain differentiation and axonogenesis in amphibians: I. Differentiation of the suprachiasmatic nucleus in relation to background adaptation behavior., Eagleson GW, Ubink R, Jenks BG, Roubos EW., Brain Behav Evol. January 1, 1998; 52 (1): 23-36.


Genetic manipulations of cholinergic communication reveal trans-acting control mechanisms over acetylcholine receptors., Broide RS, Grifman M, Shapira M, Ginzberg D, Soreq H., J Recept Signal Transduct Res. January 1, 1997; 17 (1-3): 279-91.


Overlapping drug interaction sites of human butyrylcholinesterase dissected by site-directed mutagenesis., Loewenstein-Lichtenstein Y, Glick D, Gluzman N, Sternfeld M, Zakut H, Soreq H., Mol Pharmacol. December 1, 1996; 50 (6): 1423-31.


Neuroanatomical and histochemical evidence for the presence of common lateral line and inner ear efferents and of efferents to the basilar papilla in a frog, Xenopus laevis., Hellmann B, Fritzsch B., Brain Behav Evol. January 1, 1996; 47 (4): 185-94.


Transgenic expression of human acetylcholinesterase induces progressive cognitive deterioration in mice., Beeri R, Andres C, Lev-Lehman E, Timberg R, Huberman T, Shani M, Soreq H., Curr Biol. September 1, 1995; 5 (9): 1063-71.


Successive organophosphate inhibition and oxime reactivation reveals distinct responses of recombinant human cholinesterase variants., Schwarz M, Loewenstein-Lichtenstein Y, Glick D, Liao J, Norgaard-Pedersen B, Soreq H., Brain Res Mol Brain Res. July 1, 1995; 31 (1-2): 101-10.


Synaptic and epidermal accumulations of human acetylcholinesterase are encoded by alternative 3'-terminal exons., Seidman S, Sternfeld M, Ben Aziz-Aloya R, Timberg R, Kaufer-Nachum D, Soreq H., Mol Cell Biol. June 1, 1995; 15 (6): 2993-3002.


Androgen regulation of neuromuscular junction structure and function in a sexually dimorphic muscle of the frog Xenopus laevis., Brennan C, Henderson LP., J Neurobiol. June 1, 1995; 27 (2): 172-88.


Former neuritic pathways containing endogenous neural agrin have high synaptogenic activity., Cohen MW, Moody-Corbett F, Godfrey EW., Dev Biol. February 1, 1995; 167 (2): 458-68.              


Transgenic engineering of neuromuscular junctions in Xenopus laevis embryos transiently overexpressing key cholinergic proteins., Shapira M, Seidman S, Sternfeld M, Timberg R, Kaufer D, Patrick J, Soreq H., Proc Natl Acad Sci U S A. September 13, 1994; 91 (19): 9072-6.


Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase., Mutero A, Pralavorio M, Bride JM, Fournier D., Proc Natl Acad Sci U S A. June 21, 1994; 91 (13): 5922-6.


Drosophila melanogaster acetylcholinesterase: identification and expression of two mutations responsible for cold- and heat-sensitive phenotypes., Mutero A, Bride JM, Pralavorio M, Fournier D., Mol Gen Genet. June 15, 1994; 243 (6): 699-705.


Overexpressed monomeric human acetylcholinesterase induces subtle ultrastructural modifications in developing neuromuscular junctions of Xenopus laevis embryos., Seidman S, Aziz-Aloya RB, Timberg R, Loewenstein Y, Velan B, Shafferman A, Liao J, Norgaard-Pedersen B, Brodbeck U, Soreq H., J Neurochem. May 1, 1994; 62 (5): 1670-81.


Clinical concentrations of edrophonium enhance desensitization of the nicotinic acetylcholine receptor., Yost CS, Maestrone E., Anesth Analg. March 1, 1994; 78 (3): 520-6.


Mutations and impaired expression in the ACHE and BCHE genes: neurological implications., Soreq H, Ehrlich G, Schwarz M, Loewenstein Y, Glick D, Zakut H., Biomed Pharmacother. January 1, 1994; 48 (5-6): 253-9.


Chimeric human cholinesterase. Identification of interaction sites responsible for recognition of acetyl- or butyrylcholinesterase-specific ligands., Loewenstein Y, Gnatt A, Neville LF, Soreq H., J Mol Biol. November 20, 1993; 234 (2): 289-96.


Expression of a human acetylcholinesterase promoter-reporter construct in developing neuromuscular junctions of Xenopus embryos., Ben Aziz-Aloya R, Seidman S, Timberg R, Sternfeld M, Zakut H, Soreq H., Proc Natl Acad Sci U S A. March 15, 1993; 90 (6): 2471-5.        


The marginal zone of the 32-cell amphibian embryo contains all the information required for chordamesoderm development., Pierce KE, Brothers AJ., J Exp Zool. April 15, 1992; 262 (1): 40-50.


Drosophila acetylcholinesterase. Expression of a functional precursor in Xenopus oocytes., Fournier D, Mutero A, Rungger D., Eur J Biochem. February 1, 1992; 203 (3): 513-9.


Post-translational modifications of Drosophila acetylcholinesterase. In vitro mutagenesis and expression in Xenopus oocytes., Mutero A, Fournier D., J Biol Chem. January 25, 1992; 267 (3): 1695-700.


Catalytic properties of cholinesterases: importance of tyrosine 109 in Drosophila protein., Mutero A, Pralavorio M, Simeon V, Fournier D., Neuroreport. January 1, 1992; 3 (1): 39-42.


A comparison of the Xenopus laevis oocyte acetylcholinesterase with the muscle and brain enzyme suggests variations at the post-translational level., Moya MA, Fuentes ME, Inestrosa NC., Comp Biochem Physiol C Comp Pharmacol Toxicol. January 1, 1991; 98 (2-3): 299-305.


Acetylcholinesterase and butyrylcholinesterase genes coamplify in primary ovarian carcinomas., Zakut H, Ehrlich G, Ayalon A, Prody CA, Malinger G, Seidman S, Ginzberg D, Kehlenbach R, Soreq H., J Clin Invest. September 1, 1990; 86 (3): 900-8.


Dorsomedial telencephalon of lungfishes: a pallial or subpallial structure? Criteria based on histology, connectivity, and histochemistry., von Bartheld CS, Collin SP, Meyer DL., J Comp Neurol. April 1, 1990; 294 (1): 14-29.


Expression and tissue-specific assembly of human butyrylcholine esterase in microinjected Xenopus laevis oocytes., Soreq H, Seidman S, Dreyfus PA, Zevin-Sonkin D, Zakut H., J Biol Chem. June 25, 1989; 264 (18): 10608-13.


Cholinoceptive properties of human primordial, preantral, and antral oocytes: in situ hybridization and biochemical evidence for expression of cholinesterase genes., Malinger G, Zakut H, Soreq H., J Mol Neurosci. January 1, 1989; 1 (2): 77-84.


A membrane-associated dimer of acetylcholinesterase from Xenopus skeletal muscle is solubilized by phosphatidylinositol-specific phospholipase C., Inestrosa NC, Fuentes ME, Anglister L, Futerman AH, Silman I., Neurosci Lett. July 19, 1988; 90 (1-2): 186-90.


Development of acetylcholinesterase induced by basic polypeptide-coated latex beads in cultured Xenopus muscle cells., Peng HB, Gao KX, Xie MZ, Zhao DY., Dev Biol. June 1, 1988; 127 (2): 452-5.


The development of acetylcholinesterase activity in the embryonic nervous system of the frog, Xenopus laevis., Moody SA, Stein DB., Dev Biol. April 1, 1988; 467 (2): 225-32.


Effect of fibrillation on acetylcholinesterase mRNA in cultured embryonic rat myotubes., Younkin LH, McTiernan CF, Younkin SG., Exp Cell Res. January 1, 1988; 174 (1): 279-81.


Growth and morphogenesis of an autonomic ganglion. I. Matching neurons with target., Heathcote RD, Sargent PB., J Neurosci. August 1, 1987; 7 (8): 2493-501.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???