Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (56) GO Terms (0) Nucleotides (86) Proteins (36) Interactants (241) Wiki
XB-GENEPAGE-1004200

Papers associated with hpse



???displayGene.coCitedPapers???
2 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Chromatin accessibility analysis reveals distinct functions for HDAC and EZH2 activities in early appendage regeneration., Arbach HE, Harland-Dunaway M, Braden C, Chitsazan AD, Pickering E, Patel JH, Wills AE., Wound Repair Regen. November 1, 2022; 30 (6): 707-725.                        


Elevated pentose phosphate pathway flux supports appendage regeneration., Patel JH, Ong DJ, Williams CR, Callies LK, Wills AE., Cell Rep. October 25, 2022; 41 (4): 111552.                  


Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration., Suzuki S, Sasaki K, Fukazawa T, Kubo T, Kubo T., Sci Rep. February 3, 2022; 12 (1): 1903.                      


Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult Xenopus laevis., Murugan NJ, Vigran HJ, Miller KA, Golding A, Pham QL, Sperry MM, Rasmussen-Ivey C, Kane AW, Kaplan DL, Levin M., Sci Adv. January 28, 2022; 8 (4): eabj2164.            


Bacterial lipopolysaccharides can initiate regeneration of the Xenopus tadpole tail., Bishop TF, Beck CW., iScience. November 19, 2021; 24 (11): 103281.                        


TGF-β1 signaling is essential for tissue regeneration in the Xenopus tadpole tail., Nakamura M, Yoshida H, Moriyama Y, Kawakita I, Wlizla M, Takebayashi-Suzuki K, Horb ME, Suzuki A., Biochem Biophys Res Commun. August 6, 2021; 565 91-96.          


Non-canonical Hedgehog signaling regulates spinal cord and muscle regeneration in Xenopus laevis larvae., Hamilton AM, Balashova OA, Borodinsky LN., Elife. May 6, 2021; 10                               


Overexpression of TPX2 predicts poor clinical outcome and is associated with immune infiltration in hepatic cell cancer., Zhu H, Liu J, Feng J, Zhang Q, Bian T, Li X, Sun H, Zhang J, Liu Y., Medicine (Baltimore). December 4, 2020; 99 (49): e23554.            


Mucociliary Epithelial Organoids from Xenopus Embryonic Cells: Generation, Culture and High-Resolution Live Imaging., Kang HJ, Kim HY, Kim HY., J Vis Exp. July 28, 2020; (161):     


The AP-1 transcription factor JunB functions in Xenopus tail regeneration by positively regulating cell proliferation., Nakamura M, Yoshida H, Takahashi E, Wlizla M, Takebayashi-Suzuki K, Horb ME, Suzuki A., Biochem Biophys Res Commun. February 19, 2020; 522 (4): 990-995.              


Tissue mechanics drives regeneration of a mucociliated epidermis on the surface of Xenopus embryonic aggregates., Kim HY, Kim HY, Jackson TR, Stuckenholz C, Davidson LA, Davidson LA., Nat Commun. January 31, 2020; 11 (1): 665.                


The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism., Yang JJ, Bertolesi GE, Dueck S, Hehr CL, McFarlane S., eNeuro. April 9, 2019; 6 (2):                   


Early redox activities modulate Xenopus tail regeneration., Ferreira F, Raghunathan V, Luxardi G, Zhu K, Zhao M., Nat Commun. October 16, 2018; 9 (1): 4296.                


Cross-limb communication during Xenopus hindlimb regenerative response: non-local bioelectric injury signals., Busse SM, McMillen PT, Levin M., Development. October 8, 2018; 145 (19):             


A transgenic reporter under control of an es1 promoter/enhancer marks wound epidermis and apical epithelial cap during tail regeneration in Xenopus laevis tadpole., Sato K, Umesono Y, Mochii M., Dev Biol. January 15, 2018; 433 (2): 404-415.                    


interleukin-11 induces and maintains progenitors of different cell lineages during Xenopus tadpole tail regeneration., Tsujioka H, Kunieda T, Katou Y, Shirahige K, Fukazawa T, Kubo T., Nat Commun. September 8, 2017; 8 (1): 495.                                


Transcriptional dynamics of tail regeneration in Xenopus tropicalis., Chang J, Baker J, Wills A., Genesis. January 1, 2017; 55 (1-2):       


In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration., Suzuki M, Takagi C, Miura S, Sakane Y, Suzuki M, Sakuma T, Sakamoto N, Endo T, Kamei Y, Sato Y, Kimura H, Yamamoto T, Ueno N, Suzuki KT, Suzuki KT., Genes Cells. April 1, 2016; 21 (4): 358-69.                        


Heparanase 2, mutated in urofacial syndrome, mediates peripheral neural development in Xenopus., Roberts NA, Woolf AS, Stuart HM, Thuret R, McKenzie EA, Newman WG, Hilton EN., Hum Mol Genet. August 15, 2014; 23 (16): 4302-14.                              


Carbohydrate metabolism during vertebrate appendage regeneration: what is its role? How is it regulated?: A postulation that regenerating vertebrate appendages facilitate glycolytic and pentose phosphate pathways to fuel macromolecule biosynthesis., Love NR, Ziegler M, Chen Y, Amaya E., Bioessays. January 1, 2014; 36 (1): 27-33.    


Expression analysis of XPhyH-like during development and tail regeneration in Xenopus tadpoles: possible role of XPhyH-like expressing immune cells in impaired tail regenerative ability., Naora Y, Hishida Y, Fukazawa T, Kunieda T, Kubo T., Biochem Biophys Res Commun. February 8, 2013; 431 (2): 152-7.              


Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration., Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y, Gallop JL, Dorey K, Amaya E., Nat Cell Biol. February 1, 2013; 15 (2): 222-8.        


A lectin-based glycomic approach to identify characteristic features of Xenopus embryogenesis., Onuma Y, Tateno H, Tsuji S, Hirabayashi J, Ito Y, Asashima M., PLoS One. January 1, 2013; 8 (2): e56581.        


Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs., Mescher AL, Neff AW, King MW, King MW., PLoS One. January 1, 2013; 8 (11): e80477.          


In vivo electroporation of morpholinos into the regenerating adult zebrafish tail fin., Hyde DR, Godwin AR, Thummel R., J Vis Exp. March 29, 2012; (61): .  


Two promoters with distinct activities in different tissues drive the expression of heparanase in Xenopus., Bertolesi GE, Su HY, Michaiel G, Dueck SM, Hehr CL, McFarlane S., Dev Dyn. December 1, 2011; 240 (12): 2657-72.                  


Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes., Mondia JP, Adams DS, Orendorff RD, Levin M, Omenetto FG., Biomed Opt Express. August 1, 2011; 2 (8): 2383-91.          


HDAC activity is required during Xenopus tail regeneration., Tseng AS, Carneiro K, Lemire JM, Levin M., PLoS One. January 1, 2011; 6 (10): e26382.              


Long-distance signals are required for morphogenesis of the regenerating Xenopus tadpole tail, as shown by femtosecond-laser ablation., Mondia JP, Levin M, Omenetto FG, Orendorff RD, Branch MR, Adams DS., PLoS One. January 1, 2011; 6 (9): e24953.            


Induction of vertebrate regeneration by a transient sodium current., Tseng AS, Beane WS, Lemire JM, Masi A, Levin M., J Neurosci. September 29, 2010; 30 (39): 13192-200.                    


The serotonin subtype 1A receptor regulates cortisol secretion in the Gulf toadfish, Opsanus beta., Medeiros LR, Mager EM, Grosell M, McDonald MD., Gen Comp Endocrinol. September 15, 2010; 168 (3): 377-87.


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJ, Kozicz T., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


Early requirement of Hyaluronan for tail regeneration in Xenopus tadpoles., Contreras EG, Gaete M, Sánchez N, Carrasco H, Larraín J., Development. September 1, 2009; 136 (17): 2987-96.                    


Two heparanase splicing variants with distinct properties are necessary in early Xenopus development., Bertolesi GE, Michaiel G, McFarlane S., J Biol Chem. June 6, 2008; 283 (23): 16004-16.


TGF-beta signaling is required for multiple processes during Xenopus tail regeneration., Ho DM, Whitman M., Dev Biol. March 1, 2008; 315 (1): 203-16.                  


Role of the endocannabinoid system in regulation of the hypothalamic-pituitary-adrenocortical axis., Steiner MA, Wotjak CT., Prog Brain Res. January 1, 2008; 170 397-432.


H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration., Adams DS, Masi A, Levin M., Development. April 1, 2007; 134 (7): 1323-35.          


Apoptosis is required during early stages of tail regeneration in Xenopus laevis., Tseng AS, Adams DS, Qiu D, Koustubhan P, Levin M., Dev Biol. January 1, 2007; 301 (1): 62-9.        


GalNAc moieties in O-linked oligosaccharides of the primordial germ cells of Xenopus embryos., Alonso E, Sáez FJ, Madrid JF, Hernández F., Histochem Cell Biol. April 1, 2002; 117 (4): 345-9.


Ribosomal RNA genes of Phaseolus coccineus. I., Maggini F, Tucci G, Demartis A, Gelati MT, Avanzi S., Plant Mol Biol. April 1, 1992; 18 (6): 1073-82.


Binding studies of gold labelled lectins on carbohydrate compounds of the flask cells in claw-frog kidney., Jonas L, Ostwald C, Walzel H., Acta Histochem. January 1, 1991; 90 (2): 121-6.


EVOLUTIONARY INFERENCES FROM RESTRICTION MAPS OF MITOCHONDRIAL DNA FROM NINE TAXA OF XENOPUS FROGS., Carr SM, Brothers AJ, Wilson AC., Evolution. January 1, 1987; 41 (1): 176-188.


DNA methylation of three 5' C-C-G-G 3' sites in the promoter and 5' region inactivate the E2a gene of adenovirus type 2., Langner KD, Vardimon L, Renz D, Doerfler W., Proc Natl Acad Sci U S A. May 1, 1984; 81 (10): 2950-4.


The methylation pattern of tRNA genes in Xenopus laevis., Talwar S, Pocklington MJ, Maclean N., Nucleic Acids Res. March 12, 1984; 12 (5): 2509-17.


Persistence, methylation and expression of vitellogenin gene derivatives after injection into fertilized eggs of Xenopus laevis., Andres AC, Muellener DB, Ryffel GU., Nucleic Acids Res. March 12, 1984; 12 (5): 2283-302.


Replication and expression of Xenopus laevis globin genes injected into fertilized Xenopus eggs., Bendig MM, Williams JG., Proc Natl Acad Sci U S A. October 1, 1983; 80 (20): 6197-201.


In contrast to other Xenopus genes the estrogen-inducible vitellogenin genes are expressed when totally methylated., Gerber-Huber S, May FE, Westley BR, Felber BK, Hosbach HA, Andres AC, Ryffel GU., Cell. May 1, 1983; 33 (1): 43-51.


Variation in the DNA methylation pattern of expressed and nonexpressed genes in chicken., Cooper DN, Errington LH, Clayton RM., DNA. January 1, 1983; 2 (2): 131-40.


Methylation of simian virus 40 Hpa II site affects late, but not early, viral gene expression., Fradin A, Manley JL, Prives CL., Proc Natl Acad Sci U S A. September 1, 1982; 79 (17): 5142-6.


Inheritance of DNA methylation in microinjected eggs of Xenopus laevis., Harland RM., Proc Natl Acad Sci U S A. April 1, 1982; 79 (7): 2323-7.

???pagination.result.page??? 1 2 ???pagination.result.next???