Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (56) GO Terms (1) Nucleotides (228) Proteins (123) Interactants (877) Wiki
XB-GENEPAGE-1011627

Papers associated with tcf4



???displayGene.coCitedPapers???
6 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Identification of non-tissue-specific helix-loop-helix genes in Xenopus laevis., Shain DH, Zuber MX., Gene. November 20, 1995; 165 (2): 319-20.


TCF-4 binds beta-catenin and is expressed in distinct regions of the embryonic brain and limbs., Cho EA, Dressler GR., Mech Dev. September 1, 1998; 77 (1): 9-18.


A possible role for the high mobility group box transcription factor Tcf-4 in vertebrate gut epithelial cell differentiation., Lee YJ, Swencki B, Shoichet S, Shivdasani RA., J Biol Chem. January 15, 1999; 274 (3): 1566-72.  


XCtBP is a XTcf-3 co-repressor with roles throughout Xenopus development., Brannon M, Brown JD, Bates R, Kimelman D, Moon RT., Development. June 1, 1999; 126 (14): 3159-70.                  


Maternal and embryonic expression of zebrafish lef1., Dorsky RI, Snyder A, Cretekos CJ, Grunwald DJ, Geisler R, Haffter P, Moon RT, Raible DW., Mech Dev. August 1, 1999; 86 (1-2): 147-50.


Keeping a close eye on Wnt-1/wg signaling in Xenopus., Gradl D, Kühl M, Wedlich D., Mech Dev. August 1, 1999; 86 (1-2): 3-15.    


Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin., Zorn AM, Barish GD, Williams BO, Lavender P, Klymkowsky MW, Varmus HE., Mol Cell. October 1, 1999; 4 (4): 487-98.                


Membrane-anchored plakoglobins have multiple mechanisms of action in Wnt signaling., Klymkowsky MW, Williams BO, Barish GD, Varmus HE, Vourgourakis YE., Mol Biol Cell. October 1, 1999; 10 (10): 3151-69.


The Yin-Yang of TCF/beta-catenin signaling., Barker N, Morin PJ, Clevers H., Adv Cancer Res. January 1, 2000; 77 1-24.


The HMG-box transcription factor XTcf-4 demarcates the forebrain-midbrain boundary., König A, Gradl D, Kühl M, Wedlich D., Mech Dev. May 1, 2000; 93 (1-2): 211-4.    


Identification of two regulatory elements within the high mobility group box transcription factor XTCF-4., Pukrop T, Gradl D, Henningfeld KA, Knochel W, Wedlich D, Kuhl M., J Biol Chem. March 23, 2001; 276 (12): 8968-78.


Physiological regulation of [beta]-catenin stability by Tcf3 and CK1epsilon., Lee E, Lee E, Salic A, Kirschner MW., J Cell Biol. September 3, 2001; 154 (5): 983-93.                


Structure of a human Tcf4-beta-catenin complex., Poy F, Lepourcelet M, Shivdasani RA, Eck MJ., Nat Struct Biol. December 1, 2001; 8 (12): 1053-7.


Tcf4 can specifically recognize beta-catenin using alternative conformations., Graham TA, Ferkey DM, Mao F, Kimelman D, Xu W., Nat Struct Biol. December 1, 2001; 8 (12): 1048-52.


Wnt-1 but not epidermal growth factor induces beta-catenin/T-cell factor-dependent transcription in esophageal cancer cells., Mizushima T, Nakagawa H, Kamberov YG, Wilder EL, Klein PS, Rustgi AK., Cancer Res. January 1, 2002; 62 (1): 277-82.


Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3., Houston DW, Kofron M, Resnik E, Langland R, Destree O, Wylie C, Heasman J., Development. September 1, 2002; 129 (17): 4015-25.          


Synergistic cooperation between the beta-catenin signaling pathway and steroidogenic factor 1 in the activation of the Mullerian inhibiting substance type II receptor., Hossain A, Saunders GF., J Biol Chem. July 18, 2003; 278 (29): 26511-6.


Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex., Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F, Bruseo C, Wood AW, Shivdasani RA., Cancer Cell. January 1, 2004; 5 (1): 91-102.


Regulation of Otx2 expression and its functions in mouse epiblast and anterior neuroectoderm., Kurokawa D, Takasaki N, Kiyonari H, Nakayama R, Kimura-Yoshida C, Matsuo I, Aizawa S., Development. July 1, 2004; 131 (14): 3307-17.      


XSENP1, a novel sumo-specific protease in Xenopus, inhibits normal head formation by down-regulation of Wnt/beta-catenin signalling., Yukita A, Michiue T, Fukui A, Sakurai K, Yamamoto H, Ihara M, Kikuchi A, Asashima M., Genes Cells. August 1, 2004; 9 (8): 723-36.              


Distinct roles for Xenopus Tcf/Lef genes in mediating specific responses to Wnt/beta-catenin signalling in mesoderm development., Liu F, van den Broek O, Destrée O, Hoppler S., Development. December 1, 2005; 132 (24): 5375-85.          


RanBP3 enhances nuclear export of active (beta)-catenin independently of CRM1., Hendriksen J, Fagotto F, van der Velde H, van Schie M, Noordermeer J, Fornerod M., J Cell Biol. December 5, 2005; 171 (5): 785-97.                  


Maternal XTcf1 and XTcf4 have distinct roles in regulating Wnt target genes., Standley HJ, Destrée O, Kofron M, Wylie C, Heasman J., Dev Biol. January 15, 2006; 289 (2): 318-28.  


NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF)., Yamada M, Ohnishi J, Ohkawara B, Iemura S, Satoh K, Hyodo-Miura J, Kawachi K, Natsume T, Shibuya H., J Biol Chem. July 28, 2006; 281 (30): 20749-20760.                    


Crystal structure of a beta-catenin/BCL9/Tcf4 complex., Sampietro J, Dahlberg CL, Cho US, Hinds TR, Kimelman D, Xu W., Mol Cell. October 20, 2006; 24 (2): 293-300.


Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells., Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Rankin S, Lin SC, Jonatan D, Zorn AM, Wells JM., Mol Cell Biol. November 1, 2007; 27 (22): 7802-15.                


Myeloid translocation gene family members associate with T-cell factors (TCFs) and influence TCF-dependent transcription., Moore AC, Amann JM, Williams CS, Tahinci E, Farmer TE, Martinez JA, Yang G, Luce KS, Lee E, Hiebert SW., Mol Cell Biol. February 1, 2008; 28 (3): 977-87.


Autoregulation of XTcf-4 depends on a Lef/Tcf site on the XTcf-4 promoter., Koenig SF, Lattanzio R, Mansperger K, Rupp RA, Wedlich D, Gradl D., Genesis. February 1, 2008; 46 (2): 81-6.


An integrated genome screen identifies the Wnt signaling pathway as a major target of WT1., Kim MK, McGarry TJ, O Broin P, Flatow JM, Golden AA, Licht JD., Proc Natl Acad Sci U S A. July 7, 2009; 106 (27): 11154-9.


En2, Pax2/5 and Tcf-4 transcription factors cooperate in patterning the Xenopus brain., Koenig SF, Brentle S, Hamdi K, Fichtner D, Wedlich D, Gradl D., Dev Biol. April 15, 2010; 340 (2): 318-28.                  


Traf2- and Nck-interacting kinase is essential for canonical Wnt signaling in Xenopus axis formation., Satow R, Shitashige M, Jigami T, Honda K, Ono M, Hirohashi S, Yamada T., J Biol Chem. August 20, 2010; 285 (34): 26289-94.


Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria., Hernandez L, Roux KJ, Wong ES, Mounkes LC, Mutalif R, Navasankari R, Rai B, Cool S, Jeong JW, Wang H, Lee HS, Kozlov S, Grunert M, Keeble T, Jones CM, Meta MD, Young SG, Daar IO, Burke B, Perantoni AO, Stewart CL., Dev Cell. September 14, 2010; 19 (3): 413-25.  


Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling., Day RC, Beck CW., BMC Dev Biol. January 26, 2011; 11 54.                                                


Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning., Kozmikova I, Smolikova J, Vlcek C, Kozmik Z., PLoS One. February 3, 2011; 6 (2): e14650.                  


Phosphorylation of TCF proteins by homeodomain-interacting protein kinase 2., Hikasa H, Sokol SY., J Biol Chem. April 8, 2011; 286 (14): 12093-100.


Functional analyses of vertebrate TCF proteins in C. elegans embryos., Robertson SM, Lo MC, Odom R, Yang XD, Medina J, Huang S, Lin R., Dev Biol. July 1, 2011; 355 (1): 115-23.


Transcription factor Zic2 inhibits Wnt/β-catenin protein signaling., Pourebrahim R, Houtmeyers R, Ghogomu S, Janssens S, Thelie A, Tran HT, Langenberg T, Vleminckx K, Vleminckx K, Bellefroid E, Cassiman JJ, Tejpar S., J Biol Chem. October 28, 2011; 286 (43): 37732-40.          


Cortical rotation and messenger RNA localization in Xenopus axis formation., Houston DW., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (3): 371-88.        


β-Catenin-independent activation of TCF1/LEF1 in human hematopoietic tumor cells through interaction with ATF2 transcription factors., Grumolato L, Liu G, Haremaki T, Mungamuri SK, Mong P, Akiri G, Lopez-Bergami P, Arita A, Anouar Y, Mlodzik M, Ronai ZA, Brody J, Weinstein DC, Aaronson SA., PLoS Genet. January 1, 2013; 9 (8): e1003603.            


The conserved barH-like homeobox-2 gene barhl2 acts downstream of orthodentricle-2 and together with iroquois-3 in establishment of the caudal forebrain signaling center induced by Sonic Hedgehog., Juraver-Geslin HA, Gómez-Skarmeta JL, Durand BC., Dev Biol. December 1, 2014; 396 (1): 107-20.                    


A Molecular atlas of Xenopus respiratory system development., Rankin SA, Rankin SA, Thi Tran H, Wlizla M, Mancini P, Shifley ET, Bloor SD, Han L, Vleminckx K, Vleminckx K, Wert SE, Zorn AM., Dev Dyn. January 1, 2015; 244 (1): 69-85.                    


Direct regulation of siamois by VegT is required for axis formation in Xenopus embryo., Li HY, El Yakoubi W, Shi DL., Int J Dev Biol. January 1, 2015; 59 (10-12): 443-51.                          


The E3 ligase RNF43 inhibits Wnt signaling downstream of mutated β-catenin by sequestering TCF4 to the nuclear membrane., Loregger A, Grandl M, Mejías-Luque R, Allgäuer M, Degenhart K, Haselmann V, Oikonomou C, Hatzis P, Janssen KP, Nitsche U, Gradl D, van den Broek O, Destree O, Ulm K, Neumaier M, Kalali B, Jung A, Varela I, Schmid RM, Rad R, Busch DH, Gerhard M., Sci Signal. September 8, 2015; 8 (393): ra90.


Aberrant regulation of Wnt signaling in hepatocellular carcinoma., Liu LJ, Xie SX, Chen YT, Xue JL, Zhang CJ, Zhu F., World J Gastroenterol. September 7, 2016; 22 (33): 7486-99.      


Genome evolution in the allotetraploid frog Xenopus laevis., Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS., Nature. October 20, 2016; 538 (7625): 336-343.                              


Functional differences between Tcf1 isoforms in early Xenopus development., Roël G, Van Den Broek O, Destrée O., Int J Dev Biol. January 1, 2017; 61 (1-2): 29-34.          


Genome-wide identification of Wnt/β-catenin transcriptional targets during Xenopus gastrulation., Kjolby RAS, Harland RM., Dev Biol. June 15, 2017; 426 (2): 165-175.                                    


Id genes are essential for early heart formation., Cunningham TJ, Yu MS, McKeithan WL, Spiering S, Carrette F, Huang CT, Bushway PJ, Tierney M, Albini S, Giacca M, Mano M, Puri PL, Sacco A, Ruiz-Lozano P, Riou JF, Umbhauer M, Duester G, Mercola M, Colas AR., Genes Dev. July 1, 2017; 31 (13): 1325-1338.                


Inhibiting glycogen synthase kinase-3 and transforming growth factor-β signaling to promote epithelial transition of human adipose mesenchymal stem cells., Setiawan M, Tan XW, Goh TW, Hin-Fai Yam G, Mehta JS., Biochem Biophys Res Commun. September 2, 2017; 490 (4): 1381-1388.


Xenopus SOX5 enhances myogenic transcription indirectly through transrepression., Della Gaspera B, Chesneau A, Weill L, Charbonnier F, Chanoine C., Dev Biol. October 15, 2018; 442 (2): 262-275.                    

???pagination.result.page??? 1 2 ???pagination.result.next???