Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (49) GO Terms (0) Nucleotides (39) Proteins (27) Interactants (267) Wiki
XB-GENEPAGE-1018461

Papers associated with mtnr1a



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Local protein synthesis of neuronal MT1-MMP for agrin-induced presynaptic development., Yu J, Oentaryo MJ, Lee CW, Lee CW., Development. May 15, 2021; 148 (10):


The regulation of skin pigmentation in response to environmental light by pineal Type II opsins and skin melanophore melatonin receptors., Bertolesi GE, Atkinson-Leadbeater K, Mackey EM, Song YN, Heyne B, McFarlane S., J Photochem Photobiol B. November 1, 2020; 212 112024.  


CRISPR/Cas9 mediated mutation of the mtnr1a melatonin receptor gene causes rod photoreceptor degeneration in developing Xenopus tropicalis., Wiechmann AF, Martin TA, Horb ME., Sci Rep. August 13, 2020; 10 (1): 13757.                                  


Neuronal MT1-MMP mediates ECM clearance and Lrp4 cleavage for agrin deposition and signaling in presynaptic development., Oentaryo MJ, Tse AC, Lee CW, Lee CW., J Cell Sci. August 5, 2020; 133 (15):


Site-directed MT1-MMP trafficking and surface insertion regulate AChR clustering and remodeling at developing NMJs., Chan ZC, Kwan HR, Wong YS, Jiang Z, Zhou Z, Tam KW, Chan YS, Chan CB, Lee CW, Lee CW., Elife. March 24, 2020; 9                                     


Spatial analysis of RECK, MT1-MMP, and TIMP-2 proteins during early Xenopus laevis development., Willson JA, Damjanovski S., Gene Expr Patterns. December 1, 2019; 34 119066.              


Modulation of RECK levels in Xenopus A6 cells: effects on MT1-MMP, MMP-2 and pERK levels., Willson JA, Bork BS, Muir CA, Damjanovski S., J Biol Res (Thessalon). November 27, 2019; 26 16.              


PTK7 proteolytic fragment proteins function during early Xenopus development., Lichtig H, Cohen Y, Bin-Nun N, Golubkov V, Frank D., Dev Biol. September 1, 2019; 453 (1): 48-55.        


Draft genome of Dugesia japonica provides insights into conserved regulatory elements of the brain restriction gene nou-darake in planarians., An Y, Kawaguchi A, Zhao C, Toyoda A, Sharifi-Zarchi A, Mousavi SA, Bagherzadeh R, Inoue T, Ogino H, Fujiyama A, Chitsaz H, Baharvand H, Agata K., Zoological Lett. January 1, 2018; 4 24.  


Melatonin signaling affects the timing in the daily rhythm of phagocytic activity by the retinal pigment epithelium., Laurent V, Sengupta A, Sánchez-Bretaño A, Hicks D, Tosini G., Exp Eye Res. December 1, 2017; 165 90-95.


Benzocyclobutane, benzocycloheptane and heptene derivatives as melatonin agonists and antagonists., Tsotinis A, Afroudakis PA, Garratt PJ, Bocianowska-Zbrog A, Sugden D., ChemMedChem. October 1, 2014; 9 (10): 2238-43.


Functional characterization of tissue inhibitor of metalloproteinase-1 (TIMP-1) N- and C-terminal domains during Xenopus laevis development., Nieuwesteeg MA, Willson JA, Cepeda M, Fox MA, Damjanovski S., ScientificWorldJournal. January 30, 2014; 2014 467907.                


Diurnal variation of tight junction integrity associates inversely with matrix metalloproteinase expression in Xenopus laevis corneal epithelium: implications for circadian regulation of homeostatic surface cell desquamation., Wiechmann AF, Ceresa BP, Howard EW., PLoS One. January 1, 2014; 9 (11): e113810.                


Melatonin receptors are anatomically organized to modulate transmission specifically to cone pathways in the retina of Xenopus laevis., Wiechmann AF, Sherry DM., J Comp Neurol. April 15, 2012; 520 (6): 1115-27.                  


Melatonin receptor expression in Xenopus laevis surface corneal epithelium: diurnal rhythm of lateral membrane localization., Wiechmann AF, Hollaway LR, Rada JA., Mol Vis. November 17, 2009; 15 2384-403.                    


GPR50 is the mammalian ortholog of Mel1c: evidence of rapid evolution in mammals., Dufourny L, Levasseur A, Migaud M, Callebaut I, Pontarotti P, Malpaux B, Monget P., BMC Evol Biol. February 8, 2008; 8 105.            


Convergence of a head-field selector Otx2 and Notch signaling: a mechanism for lens specification., Ogino H, Fisher M, Grainger RM., Development. January 1, 2008; 135 (2): 249-58.          


Signal transduction of fertilization in frog eggs and anti-apoptotic mechanism in human cancer cells: common and specific functions of membrane microdomains., Sato K., Open Biochem J. January 1, 2008; 2 49-59.        


Membrane type-1 matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 RNA levels mimic each other during Xenopus laevis metamorphosis., Walsh LA, Carere DA, Cooper CA, Damjanovski S., PLoS One. October 3, 2007; 2 (10): e1000.          


Evidence for a cooperative role of gelatinase A and membrane type-1 matrix metalloproteinase during Xenopus laevis development., Hasebe T, Hartman R, Fu L, Amano T, Shi YB., Mech Dev. January 1, 2007; 124 (1): 11-22.


Roles of Matrix Metalloproteinases and ECM Remodeling during Thyroid Hormone-Dependent Intestinal Metamorphosis in Xenopus laevis., Fu L, Hasebe T, Ishizuya-Oka A, Shi YB., Organogenesis. January 1, 2007; 3 (1): 14-9.        


Spatial and temporal expression profiles suggest the involvement of gelatinase A and membrane type 1 matrix metalloproteinase in amphibian metamorphosis., Hasebe T, Hartman R, Matsuda H, Shi YB, Shi YB., Cell Tissue Res. April 1, 2006; 324 (1): 105-16.


Bicyclic melatonin receptor agonists containing a ring-junction nitrogen: Synthesis, biological evaluation, and molecular modeling of the putative bioactive conformation., Elsner J, Boeckler F, Davidson K, Sugden D, Gmeiner P., Bioorg Med Chem. March 15, 2006; 14 (6): 1949-58.


Alphavbeta3 integrin and cofilin modulate K1735 melanoma cell invasion., Dang D, Bamburg JR, Ramos DM., Exp Cell Res. February 15, 2006; 312 (4): 468-77.


Stimulation of melatonin receptors decreases calcium levels in xenopus tectal cells by activating GABA(C) receptors., Prada C, Udin SB, Wiechmann AF, Zhdanova IV., J Neurophysiol. August 1, 2005; 94 (2): 968-78.


Localization of Mel1b melatonin receptor-like immunoreactivity in ocular tissues of Xenopus laevis., Wiechmann AF, Udin SB, Summers Rada JA., Exp Eye Res. October 1, 2004; 79 (4): 585-94.                  


Binding affinity and biological activity of oxygen and sulfur isosteres at melatonin receptors as a function of their hydrogen bonding capability., Davies DJ, Faust R, Garratt PJ, Marivingt-Mounir C, Kathryn Davidson, Teh MT, Sugden D., Bioorg Chem. February 1, 2004; 32 (1): 1-12.


Some sweet and bitter tastants stimulate inhibitory pathway of adenylyl cyclase via melatonin and alpha 2-adrenergic receptors in Xenopus laevis melanophores., Zubare-Samuelov M, Peri I, Tal M, Tarshish M, Spielman AI, Naim M., Am J Physiol Cell Physiol. November 1, 2003; 285 (5): C1255-62.


Melatonin receptor expression in the cornea and sclera., Wiechmann AF, Rada JA., Exp Eye Res. August 1, 2003; 77 (2): 219-25.          


Gene expression and functional characterization of melatonin receptors in the spinal cord of the rat: implications for pain modulation., Zahn PK, Lansmann T, Berger E, Speckmann EJ, Musshoff U., J Pineal Res. August 1, 2003; 35 (1): 24-31.


Differential distribution of Mel(1a) and Mel(1c) melatonin receptors in Xenopus laevis retina., Wiechmann AF., Exp Eye Res. January 1, 2003; 76 (1): 99-106.          


Molecular determinants for the differential coupling of Galpha(16) to the melatonin MT1, MT2 and Xenopus Mel1c receptors., Lai FP, Mody SM, Yung LY, Kam JY, Pang CS, Pang SF, Wong YH., J Neurochem. March 1, 2002; 80 (5): 736-45.


Melatonin receptors in rat hippocampus: molecular and functional investigations., Musshoff U, Riewenherm D, Berger E, Fauteck JD, Speckmann EJ., Hippocampus. January 1, 2002; 12 (2): 165-73.


Melatonin receptor mRNA and protein expression in Xenopus laevis nonpigmented ciliary epithelial cells., Wiechmann AF, Wirsig-Wiechmann CR., Exp Eye Res. November 1, 2001; 73 (5): 617-23.        


Melatonin receptor RNA is expressed in photoreceptors and displays a diurnal rhythm in Xenopus retina., Wiechmann AF, Smith AR., Brain Res Mol Brain Res. July 13, 2001; 91 (1-2): 104-11.      


Chimeric Galphaq subunits can distinguish the long form of the Xenopus Mel1c melatonin receptor from the mammalian mt1 and MT2 melatonin receptors., Lai FP, Mody SM, Yung LY, Pang CS, Pang SF, Wong YH., J Pineal Res. April 1, 2001; 30 (3): 171-9.


Expression and functional characterization of the mt1 melatonin receptor from rat brain in Xenopus oocytes: evidence for coupling to the phosphoinositol pathway., Blumenau C, Berger E, Fauteck JD, Madeja M, Wittkowski W, Speckmann EJ, Musshoff U., J Pineal Res. April 1, 2001; 30 (3): 139-46.


Differential signaling of human Mel1a and Mel1b melatonin receptors through the cyclic guanosine 3'-5'-monophosphate pathway., Petit L, Lacroix I, de Coppet P, Strosberg AD, Jockers R., Biochem Pharmacol. August 15, 1999; 58 (4): 633-9.


The putative melatonin receptor antagonist GR128107 is a partial agonist on Xenopus laevis melanophores., Teh MT, Sugden D., Br J Pharmacol. March 1, 1999; 126 (5): 1237-45.


Melatonin receptor RNA expression in Xenopus retina., Wiechmann AF, Campbell LD, Defoe DM., Brain Res Mol Brain Res. January 8, 1999; 63 (2): 297-303.        


Design of subtype selective melatonin receptor agonists and antagonists., Sugden D, Yeh LK, Teh MT., Reprod Nutr Dev. January 1, 1999; 39 (3): 335-44.


Polymorphism and signalling of melatonin receptors., Brydon L, Petit L, de Coppet P, Barrett P, Morgan PJ, Strosberg AD, Jockers R., Reprod Nutr Dev. January 1, 1999; 39 (3): 315-24.


Comparison of the structure-activity relationships of melatonin receptor agonists and antagonists: lengthening the N-acyl side-chain has differing effects on potency on Xenopus melanophores., Teh MT, Sugden D., Naunyn Schmiedebergs Arch Pharmacol. November 1, 1998; 358 (5): 522-8.


Melatonin receptors: molecular biology of a new family of G protein-coupled receptors., Reppert SM., J Biol Rhythms. December 1, 1997; 12 (6): 528-31.


Melatonin receptor pharmacology: toward subtype specificity., Sugden D, Pickering H, Teh MT, Garratt PJ., Biol Cell. November 1, 1997; 89 (8): 531-7.


A novel matrix metalloproteinase gene (XMMP) encoding vitronectin-like motifs is transiently expressed in Xenopus laevis early embryo development., Yang M, Murray MT, Kurkinen M., J Biol Chem. May 23, 1997; 272 (21): 13527-33.          


Analogues of diverse structure are unable to differentiate native melatonin receptors in the chicken retina, sheep pars tuberalis and Xenopus melanophores., Pickering H, Sword S, Vonhoff S, Jones R, Sugden D., Br J Pharmacol. September 1, 1996; 119 (2): 379-87.


Binding to cadherins antagonizes the signaling activity of beta-catenin during axis formation in Xenopus., Fagotto F, Funayama N, Gluck U, Gumbiner BM., J Cell Biol. March 1, 1996; 132 (6): 1105-14.                


Melatonin receptors are for the birds: molecular analysis of two receptor subtypes differentially expressed in chick brain., Reppert SM, Weaver DR, Cassone VM, Godson C, Kolakowski LF., Neuron. November 1, 1995; 15 (5): 1003-15.

???pagination.result.page??? 1