Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (42) GO Terms (17) Nucleotides (30) Proteins (18) Interactants (474) Wiki
XB-GENEPAGE-478063

Papers associated with foxh1.2



???displayGene.coCitedPapers???
11 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


The transcriptional role of Smads and FAST (FoxH1) in TGFbeta and activin signalling., Attisano L, Silvestri C, Izzi L, Labbé E., Mol Cell Endocrinol. June 30, 2001; 180 (1-2): 3-11.


The role of a Williams-Beuren syndrome-associated helix-loop-helix domain-containing transcription factor in activin/nodal signaling., Ring C, Ogata S, Meek L, Song J, Ohta T, Miyazono K, Cho KW., Genes Dev. April 1, 2002; 16 (7): 820-35.    


A novel Xenopus Smad-interacting forkhead transcription factor (XFast-3) cooperates with XFast-1 in regulating gastrulation movements., Howell M, Inman GJ, Hill CS., Development. June 1, 2002; 129 (12): 2823-34.    


Regulation of the Lim-1 gene is mediated through conserved FAST-1/FoxH1 sites in the first intron., Watanabe M, Rebbert ML, Andreazzoli M, Takahashi N, Toyama R, Zimmerman S, Whitman M, Dawid IB., Dev Dyn. December 1, 2002; 225 (4): 448-56.


The Mix family homeodomain gene bonnie and clyde functions with other components of the Nodal signaling pathway to regulate neural patterning in zebrafish., Trinh LA, Meyer D, Stainier DY., Development. October 1, 2003; 130 (20): 4989-98.


New roles for FoxH1 in patterning the early embryo., Kofron M, Puck H, Standley H, Wylie C, Old R, Whitman M, Heasman J., Development. October 1, 2004; 131 (20): 5065-78.              


Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development., Pohl BS, Knöchel W., Gene. January 3, 2005; 344 21-32.      


Selective inhibition of TGF-beta responsive genes by Smad-interacting peptide aptamers from FoxH1, Lef1 and CBP., Cui Q, Lim SK, Zhao B, Hoffmann FM., Oncogene. June 2, 2005; 24 (24): 3864-74.


Intracellular expression profiles measured by real-time PCR tomography in the Xenopus laevis oocyte., Sindelka R, Jonák J, Hands R, Bustin SA, Kubista M., Nucleic Acids Res. February 1, 2008; 36 (2): 387-92.        


Sumoylation differentially regulates Goosecoid-mediated transcriptional repression., Izzi L, Narimatsu M, Attisano L., Exp Cell Res. April 15, 2008; 314 (7): 1585-94.


Ectodermal factor restricts mesoderm differentiation by inhibiting p53., Sasai N, Yakura R, Kamiya D, Nakazawa Y, Sasai Y., Cell. May 30, 2008; 133 (5): 878-90.                        


Chromatin immunoprecipitation in early Xenopus laevis embryos., Blythe SA, Reid CD, Kessler DS, Klein PS., Dev Dyn. June 1, 2009; 238 (6): 1422-32.


Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis., Gessert S, Kühl M., Dev Biol. October 15, 2009; 334 (2): 395-408.          


Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by Nodal signaling and Eomesodermin., Fukuda M, Takahashi S, Haramoto Y, Onuma Y, Kim YJ, Yeo CY, Ishiura S, Asashima M., Int J Dev Biol. January 1, 2010; 54 (1): 81-92.              


A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer., Rankin SA, Rankin SA, Kormish J, Kofron M, Jegga A, Zorn AM., Dev Biol. March 15, 2011; 351 (2): 297-310.                            


HEB and E2A function as SMAD/FOXH1 cofactors., Yoon SJ, Wills AE, Chuong E, Gupta R, Baker JC., Genes Dev. August 1, 2011; 25 (15): 1654-61.            


The Mix family of homeobox genes--key regulators of mesendoderm formation during vertebrate development., Pereira LA, Wong MS, Mei Lim S, Stanley EG, Elefanty AG., Dev Biol. July 15, 2012; 367 (2): 163-77.        


Transcriptional integration of Wnt and Nodal pathways in establishment of the Spemann organizer., Reid CD, Zhang Y, Zhang Y, Sheets MD, Kessler DS., Dev Biol. August 15, 2012; 368 (2): 231-41.                    


A functional genome-wide in vivo screen identifies new regulators of signalling pathways during early Xenopus embryogenesis., Zhang S, Li J, Lea R, Amaya E, Dorey K., PLoS One. January 1, 2013; 8 (11): e79469.              


Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry., Flachsova M, Sindelka R, Kubista M., Sci Rep. January 1, 2013; 3 2278.      


In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency., Gentsch GE, Owens ND, Martin SR, Piccinelli P, Faial T, Trotter MW, Gilchrist MJ, Smith JC., Cell Rep. September 26, 2013; 4 (6): 1185-96.                              


Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns., Zheng Z, Christley S, Chiu WT, Blitz IL, Xie X, Cho KW, Nie Q., BMC Syst Biol. January 8, 2014; 8 3.                  


A potential molecular pathogenesis of cardiac/laterality defects in Oculo-Facio-Cardio-Dental syndrome., Tanaka K, Kato A, Angelocci C, Watanabe M, Kato Y., Dev Biol. March 1, 2014; 387 (1): 28-36.        


Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression., Nelson AC, Cutty SJ, Niini M, Stemple DL, Flicek P, Houart C, Bruce AE, Wardle FC., BMC Biol. October 3, 2014; 12 81.            


Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program., Chiu WT, Charney Le R, Blitz IL, Fish MB, Li Y, Biesinger J, Xie X, Cho KW., Development. December 1, 2014; 141 (23): 4537-47.                                  


Fezf2 promotes neuronal differentiation through localised activation of Wnt/β-catenin signalling during forebrain development., Zhang S, Li J, Lea R, Vleminckx K, Vleminckx K, Amaya E., Development. December 1, 2014; 141 (24): 4794-805.                            


E2a is necessary for Smad2/3-dependent transcription and the direct repression of lefty during gastrulation., Wills AE, Baker JC., Dev Cell. February 9, 2015; 32 (3): 345-57.                  


Pou5f3.2-induced proliferative state of embryonic cells during gastrulation of Xenopus laevis embryo., Nishitani E, Li C, Lee J, Hotta H, Katayama Y, Yamaguchi M, Kinoshita T., Dev Growth Differ. December 1, 2015; 57 (9): 591-600.              


Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development., Owens ND, Blitz IL, Lane MA, Patrushev I, Overton JD, Gilchrist MJ, Cho KW, Khokha MK., Cell Rep. January 26, 2016; 14 (3): 632-47.                                                  


FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development., Reid CD, Steiner AB, Yaklichkin S, Lu Q, Wang S, Hennessy M, Kessler DS., Dev Biol. June 1, 2016; 414 (1): 34-44.                  


Foxh1 Occupies cis-Regulatory Modules Prior to Dynamic Transcription Factor Interactions Controlling the Mesendoderm Gene Program., Charney RM, Forouzmand E, Cho JS, Cheung J, Paraiso KD, Yasuoka Y, Takahashi S, Taira M, Blitz IL, Xie X, Cho KW., Dev Cell. March 27, 2017; 40 (6): 595-607.e4.


A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo., Blitz IL, Paraiso KD, Patrushev I, Chiu WTY, Cho KWY, Gilchrist MJ., Dev Biol. June 15, 2017; 426 (2): 409-417.        


Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis., Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T., Dev Biol. June 15, 2017; 426 (2): 301-324.                          


Endodermal Maternal Transcription Factors Establish Super-Enhancers during Zygotic Genome Activation., Paraiso KD, Blitz IL, Coley M, Cheung J, Sudou N, Taira M, Cho KWY., Cell Rep. June 4, 2019; 27 (10): 2962-2977.e5.                          


Evolution of cis-regulatory modules for the head organizer gene goosecoid in chordates: comparisons between Branchiostoma and Xenopus., Yasuoka Y, Tando Y, Kubokawa K, Taira M., Zoological Lett. August 2, 2019; 5 27.                


Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals., Gentsch GE, Spruce T, Owens NDL, Smith JC., Nat Commun. September 19, 2019; 10 (1): 4269.                                        


Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm., Reich S, Weinstein DC., Genes (Basel). November 6, 2019; 10 (11):         


Xenbase: deep integration of GEO & SRA RNA-seq and ChIP-seq data in a model organism database., Fortriede JD, Pells TJ, Chu S, Chaturvedi P, Wang D, Fisher ME, Fisher ME, James-Zorn C, Wang Y, Nenni MJ, Burns KA, Lotay VS, Ponferrada VG, Karimi K, Zorn AM, Vize PD., Nucleic Acids Res. January 8, 2020; 48 (D1): D776-D782.      


Chromatin accessibility and histone acetylation in the regulation of competence in early development., Esmaeili M, Blythe SA, Tobias JW, Zhang K, Yang J, Klein PS., Dev Biol. June 1, 2020; 462 (1): 20-35.                


Generation of a FOXH1 homozygous knockout human embryonic stem cell line by CRISPR/Cas9 system., Zhang T, Huang W, Xue X., Stem Cell Res. December 10, 2020; 50 102121.  


Engagement of Foxh1 in chromatin regulation revealed by protein interactome analyses., Zhou JJ, Pham PD, Han H, Wang W, Cho KWY., Dev Growth Differ. August 1, 2022; 64 (6): 297-305.      

???pagination.result.page??? 1