Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (110) GO Terms (5) Nucleotides (433) Proteins (53) Interactants (228) Wiki
XB-GENEPAGE-481037

Papers associated with gjb1



???displayGene.coCitedPapers???
1 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Divergence between Hemichannel and Gap Junction Permeabilities of Connexin 30 and 26., Xu J, Nicholson BJ., Life (Basel). January 31, 2023; 13 (2):                 


Understanding the Role of ATP Release through Connexins Hemichannels during Neurulation., Tovar LM, Burgos CF, Yévenes GE, Moraga-Cid G, Fuentealba J, Coddou C, Bascunan-Godoy L, Catrupay C, Torres A, Castro PA., Int J Mol Sci. January 21, 2023; 24 (3):                     


Inhibition of the epithelial sodium channel (ENaC) by connexin 30 involves stimulation of clathrin-mediated endocytosis., Ilyaskin AV, Korbmacher C, Diakov A., J Biol Chem. January 1, 2021; 296 100404.                                


A novel voltage-clamp/dye uptake assay reveals saturable transport of molecules through CALHM1 and connexin channels., Gaete PS, Lillo MA, López W, Liu Y, Jiang W, Luo Y, Harris AL, Contreras JE., J Gen Physiol. November 2, 2020; 152 (11):                   


Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network., Mukherjee S, Chaturvedi P, Rankin SA, Rankin SA, Fish MB, Wlizla M, Paraiso KD, MacDonald M, Chen X, Weirauch MT, Blitz IL, Cho KW, Zorn AM., Elife. September 7, 2020; 9                           


Structural determinants underlying permeant discrimination of the Cx43 hemichannel., Nielsen BS, Zonta F, Farkas T, Litman T, Nielsen MS, MacAulay N., J Biol Chem. November 8, 2019; 294 (45): 16789-16803.              


Permeant-specific gating of connexin 30 hemichannels., Nielsen BS, Alstrom JS, Nicholson BJ, Nielsen MS, MacAulay N., J Biol Chem. December 8, 2017; 292 (49): 19999-20009.


Structural studies of N-terminal mutants of Connexin 26 and Connexin 32 using (1)H NMR spectroscopy., Batir Y, Bargiello TA, Dowd TL., Arch Biochem Biophys. October 15, 2016; 608 8-19.


Isoform-specific phosphorylation-dependent regulation of connexin hemichannels., Alstrøm JS, Hansen DB, Nielsen MS, MacAulay N., J Neurophysiol. November 1, 2015; 114 (5): 3014-22.


Glutathione release through connexin hemichannels: Implications for chemical modification of pores permeable to large molecules., Tong X, Lopez W, Ramachandran J, Ayad WA, Liu Y, Lopez-Rodriguez A, Harris AL, Contreras JE., J Gen Physiol. September 1, 2015; 146 (3): 245-54.            


Tryptophan Scanning Reveals Dense Packing of Connexin Transmembrane Domains in Gap Junction Channels Composed of Connexin32., Brennan MJ, Karcz J, Vaughn NR, Woolwine-Cunningham Y, DePriest AD, Escalona Y, Perez-Acle T, Skerrett IM., J Biol Chem. July 10, 2015; 290 (28): 17074-84.


Cell communication across gap junctions: a historical perspective and current developments., Evans WH., Biochem Soc Trans. June 1, 2015; 43 (3): 450-9.


Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi)channels., Hansen DB, Ye ZC, Calloe K, Braunstein TH, Hofgaard JP, Ransom BR, Nielsen MS, MacAulay N., J Biol Chem. September 19, 2014; 289 (38): 26058-26073.


Distinct permeation profiles of the connexin 30 and 43 hemichannels., Hansen DB, Braunstein TH, Nielsen MS, MacAulay N., FEBS Lett. April 17, 2014; 588 (8): 1446-57.


Role of connexin 32 hemichannels in the release of ATP from peripheral nerves., Nualart-Marti A, del Molino EM, Grandes X, Bahima L, Martin-Satué M, Puchal R, Fasciani I, González-Nieto D, Ziganshin B, Llobet A, Barrio LC, Solsona C., Glia. December 1, 2013; 61 (12): 1976-89.


The carboxyl terminal residues 220-283 are not required for voltage gating of a chimeric connexin32 hemichannel., Kwon T, Dowd TL, Bargiello TA., Biophys J. September 17, 2013; 105 (6): 1376-82.


Voltage-dependent gating of the Cx32*43E1 hemichannel: conformational changes at the channel entrances., Kwon T, Tang Q, Bargiello TA., J Gen Physiol. February 1, 2013; 141 (2): 243-59.                  


Prolonged FGF signaling is necessary for lung and liver induction in Xenopus., Shifley ET, Kenny AP, Rankin SA, Rankin SA, Zorn AM., BMC Dev Biol. September 18, 2012; 12 27.                      


Voltage-dependent conformational changes in connexin channels., Bargiello TA, Tang Q, Oh S, Kwon T., Biochim Biophys Acta. August 1, 2012; 1818 (8): 1807-22.


Connexin26-mediated transfer of laterality cues in Xenopus., Beyer T, Thumberger T, Schweickert A, Blum M., Biol Open. May 15, 2012; 1 (5): 473-81.            


The nephrogenic potential of the transcription factors osr1, osr2, hnf1b, lhx1 and pax8 assessed in Xenopus animal caps., Drews C, Senkel S, Ryffel GU., BMC Dev Biol. January 31, 2011; 11 5.              


Zebrafish cx30.3: identification and characterization of a gap junction gene highly expressed in the skin., Tao L, DeRosa AM, White TW, Valdimarsson G., Dev Dyn. October 1, 2010; 239 (10): 2627-36.


Conformational changes in a pore-forming region underlie voltage-dependent "loop gating" of an unapposed connexin hemichannel., Tang Q, Dowd TL, Verselis VK, Bargiello TA., J Gen Physiol. June 1, 2009; 133 (6): 555-70.                    


Charges dispersed over the permeation pathway determine the charge selectivity and conductance of a Cx32 chimeric hemichannel., Oh S, Verselis VK, Bargiello TA., J Physiol. May 15, 2008; 586 (10): 2445-61.


Site-directed mutagenesis reveals putative regions of protein interaction within the transmembrane domains of connexins., Toloue MM, Woolwine Y, Karcz JA, Kasperek EM, Nicholson BJ, Skerrett IM., Cell Commun Adhes. May 1, 2008; 15 (1): 95-105.


Unusual slow gating of gap junction channels in oocytes expressing connexin32 or its COOH-terminus truncated mutant., Peracchia C, Salim M, Peracchia LL., J Membr Biol. February 1, 2007; 215 (2-3): 161-8.


Cloning, embryonic expression, and functional characterization of two novel connexins from Xenopus laevis., de Boer TP, Kok B, Roël G, van Veen TA, Destrée OH, Rook MB, Vos MA, de Bakker JM, van der Heyden MA., Biochem Biophys Res Commun. October 20, 2006; 349 (2): 855-62.                  


Global analysis of the transcriptional network controlling Xenopus endoderm formation., Sinner D, Kirilenko P, Rankin S, Rankin S, Wei E, Howard L, Kofron M, Heasman J, Woodland HR, Zorn AM., Development. May 1, 2006; 133 (10): 1955-66.              


Loss of function mutations of the GJB2 gene detected in patients with DFNB1-associated hearing impairment., Palmada M, Schmalisch K, Böhmer C, Schug N, Pfister M, Lang F, Blin N., Neurobiol Dis. April 1, 2006; 22 (1): 112-8.


Conductance of connexin hemichannels segregates with the first transmembrane segment., Hu X, Ma M, Dahl G., Biophys J. January 1, 2006; 90 (1): 140-50.


Interplay between cystic fibrosis transmembrane regulator and gap junction channels made of connexins 45, 40, 32 and 50 expressed in oocytes., Kotsias BA, Salim M, Peracchia LL, Peracchia C., J Membr Biol. January 1, 2006; 214 (1): 1-8.


Xenopus connexins: how frogs bridge the gap., de Boer TP, van der Heyden MA., Differentiation. September 1, 2005; 73 (7): 330-40.


Severe neuropathy with leaky connexin32 hemichannels., Liang GS, de Miguel M, Gómez-Hernández JM, Glass JD, Scherer SS, Mintz M, Barrio LC, Fischbeck KH., Ann Neurol. May 1, 2005; 57 (5): 749-54.


XEpac, a guanine nucleotide-exchange factor for Rap GTPase, is a novel hatching gland specific marker during the Xenopus embryogenesis., Lee SJ, Han JK., Dev Dyn. April 1, 2005; 232 (4): 1091-7.      


Opposite Cx32 and Cx26 voltage-gating response to CO2 reflects opposite voltage-gating polarity., Young KC, Peracchia C., J Membr Biol. December 1, 2004; 202 (3): 161-70.


Dominant negative effect of connexin33 on gap junctional communication is mediated by connexin43 sequestration., Fiorini C, Mograbi B, Cronier L, Bourget I, Decrouy X, Nebout M, Ferrua B, Malassine A, Samson M, Fénichel P, Segretain D, Pointis G., J Cell Sci. September 15, 2004; 117 (Pt 20): 4665-72.


Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity., Essenfelder GM, Bruzzone R, Lamartine J, Charollais A, Blanchet-Bardon C, Barbe MT, Meda P, Waksman G., Hum Mol Genet. August 15, 2004; 13 (16): 1703-14.


The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities., Weber PA, Chang HC, Spaeth KE, Nitsche JM, Nicholson BJ., Biophys J. August 1, 2004; 87 (2): 958-73.


Determinants of gating polarity of a connexin 32 hemichannel., Oh S, Rivkin S, Tang Q, Verselis VK, Bargiello TA., Biophys J. August 1, 2004; 87 (2): 912-28.


CO(2) sensitivity of voltage gating and gating polarity of gapjunction channels--connexin40 and its COOH-terminus-truncated mutant., Peracchia C, Chen JT, Peracchia LL., J Membr Biol. July 15, 2004; 200 (2): 105-13.


Molecular basis of calcium regulation in connexin-32 hemichannels., Gómez-Hernández JM, de Miguel M, Larrosa B, González D, Barrio LC., Proc Natl Acad Sci U S A. December 23, 2003; 100 (26): 16030-5.


Pathogenesis of X-linked Charcot-Marie-Tooth disease: differential effects of two mutations in connexin 32., Abrams CK, Freidin M, Bukauskas F, Dobrenis K, Bargiello TA, Verselis VK, Bennett MV, Chen L, Sahenk Z., J Neurosci. November 19, 2003; 23 (33): 10548-58.


Single-channel SCAM identifies pore-lining residues in the first extracellular loop and first transmembrane domains of Cx46 hemichannels., Kronengold J, Trexler EB, Bukauskas FF, Bargiello TA, Verselis VK., J Gen Physiol. October 1, 2003; 122 (4): 389-405.                    


The voltage gates of connexin channels are sensitive to CO(2)., Peracchia C, Young KC, Wang XG, Chen JT, Peracchia LL., Cell Commun Adhes. January 1, 2003; 10 (4-6): 233-7.


Multiple connexins contribute to intercellular communication in the Xenopus embryo., Landesman Y, Postma FR, Goodenough DA, Paul DL., J Cell Sci. January 1, 2003; 116 (Pt 1): 29-38.    


K(ATP) channel activity is required for hatching in Xenopus embryos., Cheng SM, Chen I, Levin M., Dev Dyn. December 1, 2002; 225 (4): 588-91.        


Identification of amino acid residues lining the pore of a gap junction channel., Skerrett IM, Aronowitz J, Shin JH, Cymes G, Kasperek E, Cao FL, Nicholson BJ., J Cell Biol. October 28, 2002; 159 (2): 349-60.                    


Virtual cloning, functional expression, and gating analysis of human connexin31.9., White TW, Srinivas M, Ripps H, Trovato-Salinaro A, Condorelli DF, Bruzzone R., Am J Physiol Cell Physiol. September 1, 2002; 283 (3): C960-70.


Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems., Altevogt BM, Kleopa KA, Postma FR, Scherer SS, Paul DL., J Neurosci. August 1, 2002; 22 (15): 6458-70.


Voltage opens unopposed gap junction hemichannels formed by a connexin 32 mutant associated with X-linked Charcot-Marie-Tooth disease., Abrams CK, Bennett MV, Verselis VK, Bargiello TA., Proc Natl Acad Sci U S A. March 19, 2002; 99 (6): 3980-4.

???pagination.result.page??? 1 2 3 ???pagination.result.next???