Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (70) GO Terms (4) Nucleotides (55) Proteins (16) Interactants (179) Wiki
XB-GENEPAGE-483154

Papers associated with tecta.2

Search for tecta.2 morpholinos using Textpresso

Limit to papers also referencing gene:
3 paper(s) referencing morpholinos

Results 1 - 50 of 70 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Tectal CRFR1 receptor involvement in avoidance and approach behaviors in the South African clawed frog, Xenopus laevis., Prater CM, Harris BN, Carr JA., Horm Behav. January 1, 2020; 120 104707.


Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis., Shibata Y, Tanizaki Y, Shi YB, Shi YB., Cell Biosci. January 1, 2020; 10 46.                            


Neuroendocrine modulation of predator avoidance/prey capture tradeoffs: Role of tectal NPY2R receptors., Islam R, Prater CM, Harris BN, Carr JA., Gen Comp Endocrinol. January 1, 2019; 282 113214.


Nutrient restriction causes reversible G2 arrest in Xenopus neural progenitors., McKeown CR, Cline HT., Development. January 1, 2019; 146 (20):             


Role of the visual experience-dependent nascent proteome in neuronal plasticity., Liu HH, McClatchy DB, Schiapparelli L, Shen W, Yates JR, Cline HT., Elife. January 1, 2018; 7                     


Microvascular anatomy of the brain of the adult pipid frog, Xenopus laevis (Daudin): A scanning electron microscopic study of vascular corrosion casts., Lametschwandtner A, Minnich B., J Morphol. January 1, 2018; 279 (7): 950-969.                                                                                              


N-terminal and central domains of APC function to regulate branch number, length and angle in developing optic axonal arbors in vivo., Jin T, Peng G, Wu E, Mendiratta S, Elul T., Brain Res. January 1, 2018; 1697 34-44.        


Thyroid Hormone Receptor α Controls Developmental Timing and Regulates the Rate and Coordination of Tissue-Specific Metamorphosis in Xenopus tropicalis., Wen L, Shibata Y, Su D, Fu L, Luu N, Shi YB, Shi YB., Endocrinology. January 1, 2017; 158 (6): 1985-1998.                


Direct Regulation of Histidine Ammonia-Lyase 2 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cells., Luu N, Fu L, Fujimoto K, Shi YB, Shi YB., Endocrinology. January 1, 2017; 158 (4): 1022-1033.          


Serotonergic stimulation induces nerve growth and promotes visual learning via posterior eye grafts in a vertebrate model of induced sensory plasticity., Blackiston DJ, Vien K, Levin M., NPJ Regen Med. January 1, 2017; 2 8.            


Experience-dependent plasticity of excitatory and inhibitory intertectal inputs in Xenopus tadpoles., Gambrill AC, Faulkner R, Cline HT., J Neurophysiol. January 1, 2016; 116 (5): 2281-2297.


HDAC3 But not HDAC2 Mediates Visual Experience-Dependent Radial Glia Proliferation in the Developing Xenopus Tectum., Gao J, Ruan H, Qi X, Tao Y, Guo X, Shen W., Front Cell Neurosci. January 1, 2016; 10 221.              


An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum., Hamodi AS, Liu Z, Pratt KG., Elife. January 1, 2016; 5                   


An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system., Bestman JE, Huang LC, Lee-Osbourne J, Cheung P, Cline HT., Dev Biol. December 15, 2015; 408 (2): 269-91.                    


Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis., Okada M, Miller TC, Fu L, Shi YB., Endocrinology. September 1, 2015; 156 (9): 3381-93.  


A novel method for inducing nerve growth via modulation of host resting potential: gap junction-mediated and serotonergic signaling mechanisms., Blackiston DJ, Anderson GM, Rahman N, Bieck C, Levin M., Neurotherapeutics. January 1, 2015; 12 (1): 170-84.            


HDAC1 Regulates the Proliferation of Radial Glial Cells in the Developing Xenopus Tectum., Tao Y, Ruan H, Guo X, Li L, Shen W., PLoS One. January 1, 2015; 10 (3): e0120118.                


FMRP regulates neurogenesis in vivo in Xenopus laevis tadpoles., Faulkner RL, Wishard TJ, Thompson CK, Liu HH, Cline HT., eNeuro. January 1, 2015; 2 (1): e0055.                


Subcellular Localization of Class I Histone Deacetylases in the Developing Xenopus tectum., Guo X, Ruan H, Li X, Qin L, Tao Y, Qi X, Gao J, Gan L, Duan S, Shen W., Front Cell Neurosci. January 1, 2015; 9 510.                  


Clonal relationships impact neuronal tuning within a phylogenetically ancient vertebrate brain structure., Muldal AM, Lillicrap TP, Richards BA, Akerman CJ., Curr Biol. August 18, 2014; 24 (16): 1929-33.        


Neurogenesis is required for behavioral recovery after injury in the visual system of Xenopus laevis., McKeown CR, Sharma P, Sharipov HE, Shen W, Cline HT., J Comp Neurol. July 1, 2013; 521 (10): 2262-78.              


Global hyper-synchronous spontaneous activity in the developing optic tectum., Imaizumi K, Shih JY, Farris HE., Sci Rep. January 1, 2013; 3 1552.            


Histone H3K79 methyltransferase Dot1L is directly activated by thyroid hormone receptor during Xenopus metamorphosis., Matsuura K, Fujimoto K, Das B, Fu L, Lu CD, Shi YB., Cell Biosci. July 16, 2012; 2 (1): 25.            


Extracellular Engrailed participates in the topographic guidance of retinal axons in vivo., Wizenmann A, Brunet I, Lam J, Sonnier L, Beurdeley M, Zarbalis K, Weisenhorn-Vogt D, Weinl C, Dwivedy A, Joliot A, Wurst W, Holt C, Prochiantz A., Neuron. November 12, 2009; 64 (3): 355-366.


Spatial and temporal expression pattern of a novel gene in the frog Xenopus laevis: correlations with adult intestinal epithelial differentiation during metamorphosis., Buchholz DR, Ishizuya-Oka A, Shi YB, Shi YB., Gene Expr Patterns. May 1, 2004; 4 (3): 321-8.    


MAP2 phosphorylation and visual plasticity in Xenopus., Guo Y, Sánchez C, Udin SB., Dev Biol. June 29, 2001; 905 (1-2): 134-41.


Mapping retinal projections from double nasal and double temporal compound eyes to dually innervated tectum in Xenopus., Straznicky C., Dev Biol. November 15, 2000; 227 (2): 139-52.


Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation., Rentería RC, Constantine-Paton M., J Neurosci. August 15, 1999; 19 (16): 7066-76.          


Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study., Titmus MJ, Tsai HJ, Lima R, Udin SB., Neuroscience. January 1, 1999; 91 (2): 753-69.


Suppression of sprouting: An early function of NMDA receptors in the absence of AMPA/kainate receptor activity., Lin SY, Constantine-Paton M., J Neurosci. May 15, 1998; 18 (10): 3725-37.


Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration., Zhao Y, Szaro BG., J Neurobiol. November 20, 1997; 33 (6): 811-24.                  


Xenopus Brn-3.0, a POU-domain gene expressed in the developing retina and tectum. Not regulated by innervation., Hirsch N, Harris WA., Invest Ophthalmol Vis Sci. April 1, 1997; 38 (5): 960-9.


The contribution of protein kinases to plastic events in the superior colliculus., McCrossan D, Withington DJ, Platt B., Prog Neuropsychopharmacol Biol Psychiatry. April 1, 1997; 21 (3): 487-505.


The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S, Escandón E, Fraser SE., Dev Biol. October 10, 1996; 179 (1): 102-15.              


Polysialylated neural cell adhesion molecule and plasticity of ipsilateral connections in Xenopus tectum., Williams DK, Gannon-Murakami L, Rougon G, Udin SB., Neuroscience. January 1, 1996; 70 (1): 277-85.


Absence of topography in precociously innervated tecta., Chien CB, Cornel EM, Holt CE., Development. August 1, 1995; 121 (8): 2621-31.


The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis., Zhao Y, Szaro BG., J Neurosci. June 1, 1995; 15 (6): 4629-40.                      


Developmental changes in melanin-concentrating hormone in Rana temporaria., Francis K, Baker BI., Gen Comp Endocrinol. May 1, 1995; 98 (2): 157-65.    


Brain regions and encephalization in anurans: adaptation or stability?, Taylor GM, Nol E, Boire D., Brain Behav Evol. January 1, 1995; 45 (2): 96-109.


Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission., O'Rourke NA, Cline HT, Fraser SE., Neuron. April 1, 1994; 12 (4): 921-34.


Ultrastructure of the crossed isthmotectal projection in Xenopus frogs., Udin SB, Fisher MD, Norden JJ., J Comp Neurol. February 8, 1990; 292 (2): 246-54.


The directed growth of retinal axons towards surgically transposed tecta in Xenopus; an examination of homing behaviour by retinal ganglion cell axons., Taylor JS., Development. January 1, 1990; 108 (1): 147-58.


The induction of an anomalous ipsilateral retinotectal projection in Xenopus laevis., Taylor JS, Gaze RM., Anat Embryol (Berl). January 1, 1990; 181 (4): 393-404.


Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. I. Normal maturational changes in response to changing binocular geometry., Grant S, Keating MJ., Exp Brain Res. January 1, 1989; 75 (1): 99-116.


The ultrastructural organization of the isthmic nucleus in Xenopus., McCart R, Straznicky C., Anat Embryol (Berl). January 1, 1988; 177 (4): 325-30.


The effects of tectal lesion on the survival of isthmic neurones in Xenopus., Straznicky C, McCart R., Development. December 1, 1987; 101 (4): 869-76.


Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies., Takagi S, Tsuji T, Amagai T, Takamatsu T, Fujisawa H., Dev Biol. July 1, 1987; 122 (1): 90-100.                    


A projection from the mesencephalic tegmentum to the nucleus isthmi in the frogs, Rana pipiens and Acris crepitans., Udin SB., Neuroscience. May 1, 1987; 21 (2): 631-7.


Optic fibers follow aberrant pathways from rotated eyes in Xenopus laevis., Grant P, Ma PM., J Comp Neurol. August 15, 1986; 250 (3): 364-76.


Normal maturation involves systematic changes in binocular visual connections in Xenopus laevis., Grant S, Keating MJ., Nature. July 17, 1986; 322 (6076): 258-61.

Page(s): 1 2 Next