Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (67) GO Terms (1) Nucleotides (91) Proteins (43) Interactants (496) Wiki
XB--483663

Papers associated with evx1



???displayGene.coCitedPapers???
4 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Localization of mRNA and axis formation during Xenopus embryogenesis., Melton DA, Ruiz i Altaba A, Yisraeli J, Sokol S., Ciba Found Symp. January 1, 1989; 144 16-29; discussion 29-36, 92-8.


Involvement of the Xenopus homeobox gene Xhox3 in pattern formation along the anterior-posterior axis., Ruiz i Altaba A, Melton DA., Cell. April 21, 1989; 57 (2): 317-26.


Bimodal and graded expression of the Xenopus homeobox gene Xhox3 during embryonic development., Ruiz i Altaba A, Melton DA., Development. May 1, 1989; 106 (1): 173-83.                  


Interaction between peptide growth factors and homoeobox genes in the establishment of antero-posterior polarity in frog embryos., Ruiz i Altaba A, Melton DA., Nature. September 7, 1989; 341 (6237): 33-8.


Neural expression of the Xenopus homeobox gene Xhox3: evidence for a patterning neural signal that spreads through the ectoderm., Ruiz i Altaba A., Development. April 1, 1990; 108 (4): 595-604.


Retinoic acid modifies mesodermal patterning in early Xenopus embryos., Ruiz i Altaba A, Jessell T., Genes Dev. February 1, 1991; 5 (2): 175-87.


Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos., Ruiz i Altaba A, Jessell TM., Development. August 1, 1991; 112 (4): 945-58.                


Expression of the Xhox3 Homeobox Protein in Xenopus Embryos: Blocking Its Early Function Suggests the Requirement of Xhox3 for Normal Posterior Development: (axial pattern/central nervous system/embryonic mesoderm/homeobox gene/Xenopus laevis)., Ruiz I Altaba A, Choi T, Melton DA., Dev Growth Differ. December 1, 1991; 33 (6): 651-669.


DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction., Jones CM, Lyons KM, Lapan PM, Wright CV, Hogan BL., Development. June 1, 1992; 115 (2): 639-47.


Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm., Green JB, New HV, Smith JC., Cell. November 27, 1992; 71 (5): 731-9.            


[Ventral and posterior expression of the homeo box gene eve1 in zebrafish (Brachydanio rerio) is repressed in dorsalized embryos]., Joly JS, Maury M, Joly C, Boulekbache H, Condamine H., C R Seances Soc Biol Fil. January 1, 1993; 187 (3): 356-63.


The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos., Joly JS, Joly C, Schulte-Merker S, Boulekbache H, Condamine H., Development. December 1, 1993; 119 (4): 1261-75.


Specification of mesodermal pattern in Xenopus laevis by interactions between Brachyury, noggin and Xwnt-8., Cunliffe V, Smith JC., EMBO J. January 15, 1994; 13 (2): 349-59.


Widespread expression of the Xenopus homeobox gene Xhox3 in zebrafish eggs causes a disruption of the anterior-posterior axis., Barro O, Joly C, Condamine H, Boulekbache H., Int J Dev Biol. December 1, 1994; 38 (4): 613-22.


Widespread expression of the eve1 gene in zebrafish embryos affects the anterior-posterior axis pattern., Barro O, Vriz S, Joly JS, Joly C, Condamine H, Boulekbache H., Dev Genet. January 1, 1995; 17 (2): 117-28.


Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4., Hemmati-Brivanlou A, Thomsen GH., Dev Genet. January 1, 1995; 17 (1): 78-89.


Localized BMP-4 mediates dorsal/ventral patterning in the early Xenopus embryo., Schmidt JE, Suzuki A, Ueno N, Kimelman D., Dev Biol. May 1, 1995; 169 (1): 37-50.              


Bone morphogenetic protein 2 in the early development of Xenopus laevis., Clement JH, Fettes P, Knöchel S, Lef J, Knöchel W., Mech Dev. August 1, 1995; 52 (2-3): 357-70.            


Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox., Schmidt JE, von Dassow G, Kimelman D., Development. June 1, 1996; 122 (6): 1711-21.                    


A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos., Ault KT, Dirksen ML, Jamrich M., Proc Natl Acad Sci U S A. June 25, 1996; 93 (13): 6415-20.          


Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor., Thomsen GH., Development. August 1, 1996; 122 (8): 2359-66.              


The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling [correction of controling] dorsoventral patterning of Xenopus mesoderm., Onichtchouk D, Gawantka V, Dosch R, Delius H, Hirschfeld K, Blumenstock C, Niehrs C., Development. October 1, 1996; 122 (10): 3045-53.                  


Conservation of BMP signaling in zebrafish mesoderm patterning., Nikaido M, Tada M, Saji T, Ueno N., Mech Dev. January 1, 1997; 61 (1-2): 75-88.


A Xenopus type I activin receptor mediates mesodermal but not neural specification during embryogenesis., Chang C, Wilson PA, Mathews LS, Hemmati-Brivanlou A., Development. February 1, 1997; 124 (4): 827-37.                    


A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation., Horb ME, Thomsen GH., Development. May 1, 1997; 124 (9): 1689-98.                    


Analysis of competence and of Brachyury autoinduction by use of hormone-inducible Xbra., Tada M, O'Reilly MA, Smith JC., Development. June 1, 1997; 124 (11): 2225-34.                      


Markers of vertebrate mesoderm induction., Stennard F, Ryan K, Gurdon JB., Curr Opin Genet Dev. October 1, 1997; 7 (5): 620-7.


The ALK-2 and ALK-4 activin receptors transduce distinct mesoderm-inducing signals during early Xenopus development but do not co-operate to establish thresholds., Armes NA, Smith JC., Development. October 1, 1997; 124 (19): 3797-804.                


Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity., Piccolo S, Agius E, Lu B, Goodman S, Dale L, De Robertis EM., Cell. October 31, 1997; 91 (3): 407-16.            


XBMPRII, a novel Xenopus type II receptor mediating BMP signaling in embryonic tissues., Frisch A, Wright CV., Development. February 1, 1998; 125 (3): 431-42.                  


Analysis of the developing Xenopus tail bud reveals separate phases of gene expression during determination and outgrowth., Beck CW, Slack JM., Mech Dev. March 1, 1998; 72 (1-2): 41-52.                                                                


Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning of Xenopus mesoderm., Onichtchouk D, Glinka A, Niehrs C., Development. April 1, 1998; 125 (8): 1447-56.                  


Regulation of BMP signaling by the BMP1/TLD-related metalloprotease, SpAN., Wardle FC, Angerer LM, Angerer RC, Dale L., Dev Biol. February 1, 1999; 206 (1): 63-72.          


A developmental pathway controlling outgrowth of the Xenopus tail bud., Beck CW, Slack JM., Development. April 1, 1999; 126 (8): 1611-20.                


Xenopus embryonic E2F is required for the formation of ventral and posterior cell fates during early embryogenesis., Suzuki A, Hemmati-Brivanlou A., Mol Cell. February 1, 2000; 5 (2): 217-29.                      


Regional gene expression in the epithelia of the Xenopus tadpole gut., Chalmers AD, Slack JM, Beck CW., Mech Dev. August 1, 2000; 96 (1): 125-8.    


Gli2 functions in FGF signaling during antero-posterior patterning., Brewster R, Mullor JL, Ruiz i Altaba A., Development. October 1, 2000; 127 (20): 4395-405.            


Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells., Wang W, Mariani FV, Harland RM, Luo K., Proc Natl Acad Sci U S A. December 19, 2000; 97 (26): 14394-9.          


Molecular mechanisms of cell-cell signaling by the Spemann-Mangold organizer., De Robertis EM, Wessely O, Oelgeschläger M, Brizuela B, Pera E, Larraín J, Abreu J, Bachiller D., Int J Dev Biol. January 1, 2001; 45 (1): 189-97.        


The role of BMP signaling in outgrowth and patterning of the Xenopus tail bud., Beck CW, Whitman M, Slack JM., Dev Biol. October 15, 2001; 238 (2): 303-14.              


The Wnt/beta-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling., Domingos PM, Itasaki N, Jones CM, Mercurio S, Sargent MG, Smith JC, Krumlauf R., Dev Biol. November 1, 2001; 239 (1): 148-60.              


Antimorphic PV.1 causes secondary axis by inducing ectopic organizer., Hwang YS, Seo JJ, Cha SW, Lee HS, Lee HS, Lee SY, Roh DH, Kung Hf HF, Kim J, Ja Park M., Biochem Biophys Res Commun. April 12, 2002; 292 (4): 1081-6.        


Comparison of even-skipped related gene expression pattern in vertebrates shows an association between expression domain loss and modification of selective constraints on sequences., Avaron F, Thaëron-Antono C, Beck CW, Borday-Birraux V, Géraudie J, Casane D, Laurenti P., Evol Dev. January 1, 2003; 5 (2): 145-56.


Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos., Oelgeschläger M, Kuroda H, Reversade B, De Robertis EM., Dev Cell. February 1, 2003; 4 (2): 219-30.              


Regulation of nodal and BMP signaling by tomoregulin-1 (X7365) through novel mechanisms., Chang C, Eggen BJ, Weinstein DC, Brivanlou AH., Dev Biol. March 1, 2003; 255 (1): 1-11.                    


Interplay between the tumor suppressor p53 and TGF beta signaling shapes embryonic body axes in Xenopus., Takebayashi-Suzuki K, Funami J, Tokumori D, Saito A, Watabe T, Miyazono K, Kanda A, Suzuki A., Development. September 1, 2003; 130 (17): 3929-39.  


BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos., Gamer LW, Nove J, Levin M, Rosen V., Dev Biol. September 1, 2005; 285 (1): 156-68.              


CDMP1/GDF5 has specific processing requirements that restrict its action to joint surfaces., Thomas JT, Prakash D, Weih K, Moos M., J Biol Chem. September 8, 2006; 281 (36): 26725-33.              


Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis., Faas L, Isaacs HV., Dev Dyn. April 1, 2009; 238 (4): 835-52.                                


A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds., Cornish EJ, Hassan SM, Martin JD, Li S, Merzdorf CS., Dev Dyn. May 1, 2009; 238 (5): 1179-94.                

???pagination.result.page??? 1 2 ???pagination.result.next???