Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (70) GO Terms (17) Nucleotides (93) Proteins (55) Interactants (642) Wiki
XB-GENEPAGE-484998

Papers associated with wt1



???displayGene.coCitedPapers???
17 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Molecular cloning, characterization, and chromosomal mapping of a novel human gene (GTF3A) that is highly homologous to Xenopus transcription factor IIIA., Arakawa H, Nagase H, Hayashi N, Ogawa M, Nagata M, Fujiwara T, Takahashi E, Shin S, Nakamura Y., Cytogenet Cell Genet. January 1, 1995; 70 (3-4): 235-8.


The evolution of WT1 sequence and expression pattern in the vertebrates., Kent J, Coriat AM, Sharpe PT, Hastie ND, van Heyningen V., Oncogene. November 2, 1995; 11 (9): 1781-92.


Wilms' tumor suppressor gene is involved in the development of disparate kidney forms: evidence from expression in the Xenopus pronephros., Carroll TJ, Vize PD., Dev Dyn. June 1, 1996; 206 (2): 131-8.      


cDNA cloning and its pronephros-specific expression of the Wilms' tumor suppressor gene, WT1, from Xenopus laevis., Semba K, Saito-Ueno R, Takayama G, Kondo M., Gene. October 10, 1996; 175 (1-2): 167-72.        


Expression of a new RNA-splice isoform of WT1 in developing kidney-gonadal complexes of the turtle, Trachemys scripta., Spotila LD, Hall SE., Comp Biochem Physiol B Biochem Mol Biol. April 1, 1998; 119 (4): 761-7.


Precocious expression of the Wilms' tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis., Wallingford JB, Carroll TJ, Vize PD., Dev Biol. October 1, 1998; 202 (1): 103-12.          


Complete sequencing of the Fugu WAGR region from WT1 to PAX6: dramatic compaction and conservation of synteny with human chromosome 11p13., Miles C, Elgar G, Coles E, Kleinjan DJ, van Heyningen V, Hastie N., Proc Natl Acad Sci U S A. October 27, 1998; 95 (22): 13068-72.


Cloning of cDNA for newt WT1 and the differential expression during spermatogenesis of the Japanese newt, Cynops pyrrhogaster., Nakayama Y, Yamamoto T, Matsuda Y, Abé SI., Dev Growth Differ. December 1, 1998; 40 (6): 599-608.


Molecular regulation of pronephric development., Carroll T, Wallingford J, Seufert D, Vize PD., Curr Top Dev Biol. January 1, 1999; 44 67-100.    


Towards a molecular anatomy of the Xenopus pronephric kidney., Brändli AW., Int J Dev Biol. January 1, 1999; 43 (5): 381-95.                      


Dynamic patterns of gene expression in the developing pronephros of Xenopus laevis., Carroll TJ, Wallingford JB, Vize PD., Dev Genet. January 1, 1999; 24 (3-4): 199-207.        


Expression of genes coding for proteoglycans and Wilms' tumour susceptibility gene 1 (WT1) by variously differentiated benign human mesothelial cells., Gulyás M, Dobra K, Hjerpe A., Differentiation. October 1, 1999; 65 (2): 89-96.


The specification and growth factor inducibility of the pronephric glomus in Xenopus laevis., Brennan HC, Nijjar S, Jones EA., Development. December 1, 1999; 126 (24): 5847-56.        


Maternal cold inducible RNA binding protein is required for embryonic kidney formation in Xenopus laevis., Peng Y, Kok KH, Xu RH, Kwok KH, Tay D, Fung PC, Kung HF, Lin MC., FEBS Lett. September 29, 2000; 482 (1-2): 37-43.


Notch regulates cell fate in the developing pronephros., McLaughlin KA, Rones MS, Mercola M., Dev Biol. November 15, 2000; 227 (2): 567-80.            


Annexin IV (Xanx-4) has a functional role in the formation of pronephric tubules., Seville RA, Nijjar S, Barnett MW, Massé K, Jones EA., Development. April 1, 2002; 129 (7): 1693-704.              


Expression in Xenopus oocytes shows that WT1 binds transcripts in vivo, with a central role for zinc finger one., Ladomery M, Sommerville J, Woolner S, Slight J, Hastie N., J Cell Sci. April 15, 2003; 116 (Pt 8): 1539-49.


Isolation and growth factor inducibility of the Xenopus laevis Lmx1b gene., Haldin CE, Nijjar S, Massé K, Barnett MW, Jones EA., Int J Dev Biol. May 1, 2003; 47 (4): 253-62.            


Faithful expression of a tagged Fugu WT1 protein from a genomic transgene in zebrafish: efficient splicing of pufferfish genes in zebrafish but not mice., Miles CG, Rankin L, Smith SI, Niksic M, Elgar G, Hastie ND., Nucleic Acids Res. June 1, 2003; 31 (11): 2795-802.


The isolation and characterization of XC3H-3b: a CCCH zinc-finger protein required for pronephros development., Kaneko T, Chan T, Satow R, Fujita T, Asashima M., Biochem Biophys Res Commun. August 29, 2003; 308 (3): 566-72.        


The chicken telomerase reverse transcriptase (chTERT): molecular and cytogenetic characterization with a comparative analysis., Delany ME, Daniels LM., Gene. September 15, 2004; 339 61-9.


Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation., Van Campenhout C, Nichane M, Antoniou A, Pendeville H, Bronchain OJ, Marine JC, Mazabraud A, Voz ML, Bellefroid EJ., Dev Biol. June 1, 2006; 294 (1): 203-19.                


The Notch-effector HRT1 gene plays a role in glomerular development and patterning of the Xenopus pronephros anlagen., Taelman V, Van Campenhout C, Sölter M, Pieler T, Bellefroid EJ., Development. August 1, 2006; 133 (15): 2961-71.                  


FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development., Urban AE, Zhou X, Zhou X, Ungos JM, Raible DW, Altmann CR, Vize PD., Dev Biol. September 1, 2006; 297 (1): 103-17.                    


Retinoic acid signalling is required for specification of pronephric cell fate., Cartry J, Nichane M, Ribes V, Colas A, Riou JF, Pieler T, Dollé P, Bellefroid EJ, Umbhauer M., Dev Biol. November 1, 2006; 299 (1): 35-51.                  


Cadherin-6 is required for zebrafish nephrogenesis during early development., Kubota F, Murakami T, Mogi K, Yorifuji H., Int J Dev Biol. January 1, 2007; 51 (2): 123-9.


Diversity in the origins of sex chromosomes in anurans inferred from comparative mapping of sexual differentiation genes for three species of the Raninae and Xenopodinae., Uno Y, Nishida C, Yoshimoto S, Ito M, Oshima Y, Yokoyama S, Nakamura M, Matsuda Y., Chromosome Res. January 1, 2008; 16 (7): 999-1011.


A functional screen for genes involved in Xenopus pronephros development., Kyuno J, Massé K, Jones EA., Mech Dev. July 1, 2008; 125 (7): 571-86.                                                                                      


Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus., Colas A, Cartry J, Buisson I, Umbhauer M, Smith JC, Riou JF., Dev Biol. August 15, 2008; 320 (2): 351-65.                  


The lmx1b gene is pivotal in glomus development in Xenopus laevis., Haldin CE, Massé KL, Bhamra S, Simrick S, Kyuno J, Jones EA., Dev Biol. October 1, 2008; 322 (1): 74-85.          


A dual requirement for Iroquois genes during Xenopus kidney development., Alarcón P, Rodríguez-Seguel E, Fernández-González A, Rubio R, Gómez-Skarmeta JL., Development. October 1, 2008; 135 (19): 3197-207.                            


In vitro organogenesis from undifferentiated cells in Xenopus., Asashima M, Ito Y, Chan T, Michiue T, Nakanishi M, Suzuki K, Hitachi K, Okabayashi K, Kondow A, Ariizumi T., Dev Dyn. June 1, 2009; 238 (6): 1309-20.                      


An integrated genome screen identifies the Wnt signaling pathway as a major target of WT1., Kim MK, McGarry TJ, O Broin P, Flatow JM, Golden AA, Licht JD., Proc Natl Acad Sci U S A. July 7, 2009; 106 (27): 11154-9.


Connexin 43 regulates epicardial cell polarity and migration in coronary vascular development., Rhee DY, Zhao XQ, Francis RJ, Huang GY, Mably JD, Lo CW., Development. September 1, 2009; 136 (18): 3185-93.          


A reverse genetic screen in the zebrafish identifies crb2b as a regulator of the glomerular filtration barrier., Ebarasi L, He L, Hultenby K, Takemoto M, Betsholtz C, Tryggvason K, Majumdar A., Dev Biol. October 1, 2009; 334 (1): 1-9.      


The LIM domain protein Wtip interacts with the receptor tyrosine kinase Ror2 and inhibits canonical Wnt signalling., van Wijk NV, Witte F, Feike AC, Schambony A, Birchmeier W, Mundlos S, Stricker S., Biochem Biophys Res Commun. December 11, 2009; 390 (2): 211-6.  


Negative feedback regulation of Wnt4 signaling by EAF1 and EAF2/U19., Wan X, Ji W, Mei X, Zhou J, Liu JX, Fang C, Xiao W., PLoS One. February 9, 2010; 5 (2): e9118.                  


Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus., White JT, Zhang B, Cerqueira DM, Tran U, Wessely O., Development. June 1, 2010; 137 (11): 1863-73.                            


Four and a half LIM protein 1C (FHL1C): a binding partner for voltage-gated potassium channel K(v1.5)., Poparic I, Schreibmayer W, Schoser B, Desoye G, Gorischek A, Miedl H, Hochmeister S, Binder J, Quasthoff S, Wagner K, Windpassinger C, Malle E., PLoS One. January 1, 2011; 6 (10): e26524.            


Role of Tbx2 in defining the territory of the pronephric nephron., Cho GS, Choi SC, Park EC, Han JK., Development. February 1, 2011; 138 (3): 465-74.                        


Lhx1 is required for specification of the renal progenitor cell field., Cirio MC, Hui Z, Haldin CE, Cosentino CC, Stuckenholz C, Chen X, Hong SK, Dawid IB, Hukriede NA., PLoS One. April 15, 2011; 6 (4): e18858.                          


Xenopus as a model system for the study of GOLPH2/GP73 function: Xenopus GOLPH2 is required for pronephros development., Li L, Wen L, Gong Y, Mei G, Liu J, Chen Y, Peng T., PLoS One. January 1, 2012; 7 (6): e38939.                                              


WT1 and Sox11 regulate synergistically the promoter of the Wnt4 gene that encodes a critical signal for nephrogenesis., Murugan S, Shan J, Kühl SJ, Tata A, Pietilä I, Kühl M, Vainio SJ., Exp Cell Res. June 10, 2012; 318 (10): 1134-45.


Comparative Functional Analysis of ZFP36 Genes during Xenopus Development., Tréguer K, Faucheux C, Veschambre P, Fédou S, Thézé N, Thiébaud P., PLoS One. January 1, 2013; 8 (1): e54550.                          


Tcf21 regulates the specification and maturation of proepicardial cells., Tandon P, Miteva YV, Kuchenbrod LM, Cristea IM, Conlon FL., Development. June 1, 2013; 140 (11): 2409-21.                                


Zygotic expression of Exostosin1 (Ext1) is required for BMP signaling and establishment of dorsal-ventral pattern in Xenopus., Shieh YE, Wells DE, Sater AK., Int J Dev Biol. January 1, 2014; 58 (1): 27-34.          


Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos., Chatfield J, O'Reilly MA, Bachvarova RF, Ferjentsik Z, Redwood C, Walmsley M, Patient R, Loose M, Johnson AD., Development. June 1, 2014; 141 (12): 2429-40.              


Evolution of the vertebrate Pax4/6 class of genes with focus on its novel member, the Pax10 gene., Feiner N, Meyer A, Kuraku S., Genome Biol Evol. June 19, 2014; 6 (7): 1635-51.              


Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development., Buisson I, Le Bouffant R, Futel M, Riou JF, Umbhauer M., Dev Biol. January 15, 2015; 397 (2): 175-90.                            


Xenbase: Core features, data acquisition, and data processing., James-Zorn C, Ponferrada VG, Burns KA, Fortriede JD, Lotay VS, Liu Y, Brad Karpinka J, Karimi K, Zorn AM, Vize PD., Genesis. August 1, 2015; 53 (8): 486-97.          

???pagination.result.page??? 1 2 ???pagination.result.next???