Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (31) GO Terms (3) Nucleotides (124) Proteins (52) Interactants (340) Wiki
XB-GENEPAGE-494739

Papers associated with mecp2



???displayGene.coCitedPapers???
3 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription., Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP., Nat Genet. June 1, 1998; 19 (2): 187-91.


The methyl-CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA., Chandler SP, Guschin D, Landsberger N, Wolffe AP., Biochemistry. June 1, 1999; 38 (22): 7008-18.


Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation., Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP., Nat Genet. September 1, 1999; 23 (1): 62-6.


Functional consequences of Rett syndrome mutations on human MeCP2., Yusufzai TM, Wolffe AP., Nucleic Acids Res. November 1, 2000; 28 (21): 4172-9.


Purification of the MeCP2/histone deacetylase complex from Xenopus laevis., Jones PL, Wade PA, Wolffe AP., Methods Mol Biol. January 1, 2001; 181 297-307.


Purification of MeCP2-containing deacetylase from Xenopus laevis., Jones PL, Wade PA, Wolffe AP., Methods Mol Biol. January 1, 2002; 200 131-41.


Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation., El-Osta A, Kantharidis P, Zalcberg JR, Wolffe AP., Mol Cell Biol. March 1, 2002; 22 (6): 1844-57.


A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos., Stancheva I, Collins AL, Van den Veyver IB, Zoghbi H, Meehan RR., Mol Cell. August 1, 2003; 12 (2): 425-35.                          


Methylation gets SMRT. Functional insights into Rett syndrome., Vetter ML., Dev Cell. September 1, 2003; 5 (3): 359-60.


Molecular biology. MeCP2 repression goes nonglobal., Klose R, Bird A., Science. October 31, 2003; 302 (5646): 793-5.


A novel protein, Xenopus p20, influences the stability of MeCP2 through direct interaction., Carro S, Bergo A, Mengoni M, Bachi A, Badaracco G, Kilstrup-Nielsen C, Landsberger N., J Biol Chem. June 11, 2004; 279 (24): 25623-31.


MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions., Kishi N, Macklis JD., Mol Cell Neurosci. November 1, 2004; 27 (3): 306-21.


MeCP2 behaves as an elongated monomer that does not stably associate with the Sin3a chromatin remodeling complex., Klose RJ, Bird AP., J Biol Chem. November 5, 2004; 279 (45): 46490-6.


Differential expression of the methyl-cytosine binding protein 2 gene in embryonic and adult brain of zebrafish., Coverdale LE, Martyniuk CJ, Trudeau VL, Martin CC., Brain Res Dev Brain Res. November 25, 2004; 153 (2): 281-7.


Kaiso is a genome-wide repressor of transcription that is essential for amphibian development., Ruzov A, Dunican DS, Prokhortchouk A, Pennings S, Stancheva I, Prokhortchouk E, Meehan RR., Development. December 1, 2004; 131 (24): 6185-94.      


Rett syndrome: clinical review and genetic update., Weaving LS, Ellaway CJ, Gécz J, Christodoulou J., J Med Genet. January 1, 2005; 42 (1): 1-7.


Testing for association between MeCP2 and the brahma-associated SWI/SNF chromatin-remodeling complex., Hu K, Nan X, Bird A, Wang W., Nat Genet. September 1, 2006; 38 (9): 962-4; author reply 964-7.


Repatterning in amphibian limb regeneration: A model for study of genetic and epigenetic control of organ regeneration., Yakushiji N, Yokoyama H, Tamura K., Semin Cell Dev Biol. July 1, 2009; 20 (5): 565-74.          


DNA methylation and methyl-CpG binding proteins: developmental requirements and function., Bogdanović O, Veenstra GJ., Chromosoma. October 1, 2009; 118 (5): 549-65.  


Affinity-based enrichment strategies to assay methyl-CpG binding activity and DNA methylation in early Xenopus embryos., Bogdanović O, Veenstra GJ., BMC Res Notes. May 6, 2011; 4 300.      


Cell-autonomous alterations in dendritic arbor morphology and connectivity induced by overexpression of MeCP2 in Xenopus central neurons in vivo., Marshak S, Meynard MM, De Vries YA, Kidane AH, Cohen-Cory S., PLoS One. January 1, 2012; 7 (3): e33153.                    


Association of modified cytosines and the methylated DNA-binding protein MeCP2 with distinctive structural domains of lampbrush chromatin., Morgan GT, Jones P, Bellini M., Chromosome Res. December 1, 2012; 20 (8): 925-42.                  


An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system., Bestman JE, Huang LC, Lee-Osbourne J, Cheung P, Cline HT., Dev Biol. December 15, 2015; 408 (2): 269-91.                    


A Mutant Form of MeCP2 Protein Associated with Human Rett Syndrome Cannot Be Displaced from Methylated DNA by Notch in Xenopus Embryos., Stancheva I, Collins AL, Van den Veyver IB, Zoghbi H, Meehan RR., Mol Cell. July 7, 2016; 63 (1): 179.


5-hydroxymethylcytosine marks postmitotic neural cells in the adult and developing vertebrate central nervous system., Diotel N, Mérot Y, Coumailleau P, Gueguen MM, Sérandour AA, Salbert G, Kah O., J Comp Neurol. February 15, 2017; 525 (3): 478-497.  


GABBR2 mutations determine phenotype in rett syndrome and epileptic encephalopathy., Yoo Y, Jung J, Lee YN, Lee Y, Cho H, Na E, Hong J, Kim E, Lee JS, Lee JS, Hong C, Park SY, Wie J, Miller K, Shur N, Clow C, Ebel RS, DeBrosse SD, Henderson LB, Willaert R, Castaldi C, Tikhonova I, Bilgüvar K, Mane S, Kim KJ, Hwang YS, Lee SG, So I, Lim BC, Choi HJ, Seong JY, Shin YB, Jung H, Chae JH, Choi M., Ann Neurol. September 1, 2017; 82 (3): 466-478.


Rare Diseases of Neurodevelopment: Maintain the Mystery or Use a Dazzling Tool for Investigation? The Case of Rett Syndrome., Ruffolo G, Cifelli P, Miranda-Lourenço C, De Felice E, Limatola C, Sebastião AM, Diógenes MJ, Aronica E, Palma E., Neuroscience. July 15, 2020; 439 146-152.


Transcriptome and Methylome Analysis Reveal Complex Cross-Talks between Thyroid Hormone and Glucocorticoid Signaling at Xenopus Metamorphosis., Buisine N, Grimaldi A, Jonchere V, Rigolet M, Blugeon C, Hamroune J, Sachs LM., Cells. September 9, 2021; 10 (9):               


A convergent molecular network underlying autism and congenital heart disease., Rosenthal SB, Willsey HR, Xu Y, Xu Y, Mei Y, Dea J, Wang S, Curtis C, Sempou E, Khokha MK, Chi NC, Willsey AJ, Fisch KM, Ideker T., Cell Syst. November 17, 2021; 12 (11): 1094-1107.e6.            


A Mixture of Chemicals Found in Human Amniotic Fluid Disrupts Brain Gene Expression and Behavior in Xenopus laevis., Leemans M, Spirhanzlova P, Couderq S, Le Mével S, Grimaldi A, Duvernois-Berthet E, Demeneix B, Fini JB., Int J Mol Sci. January 30, 2023; 24 (3):               


A cyclin-dependent kinase-mediated phosphorylation switch of disordered protein condensation., Valverde JM, Dubra G, Phillips M, Haider A, Elena-Real C, Fournet A, Alghoul E, Chahar D, Andrés-Sanchez N, Paloni M, Bernadó P, van Mierlo G, Vermeulen M, van den Toorn H, Heck AJR, Constantinou A, Barducci A, Ghosh K, Sibille N, Knipscheer P, Krasinska L, Fisher D, Altelaar M., Nat Commun. October 9, 2023; 14 (1): 6316.                                      

???pagination.result.page??? 1